Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o638. doi: 10.1107/S1600536809006254

2-(4-Fluoro­anilino)-3-(2-hydroxy­ethyl)quinazolin-4(3H)-one

Qian Zhang a, Yuan-Hong Jiao a,*, Bin Liu a, Xue-Mei Chen a, Min Ruan a, Ling-Hua Xu a
PMCID: PMC2968625  PMID: 21582287

Abstract

The mol­ecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds. The existence of non-classical intra­molecular C—H⋯N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1)°.

Related literature

For the pharmacological activity of N3 and C7 disubstituted quinazolines, see: Usha et al. (2006). For the synthesis of quinazolinone and thienopyrimidinones, see: Yang et al. (2008). For synthesis, drug discovery and crystal structures, see: Yang & Wu (2008); Wang et al. (2008).graphic file with name e-65-0o638-scheme1.jpg

Experimental

Crystal data

  • C16H14FN3O2

  • M r = 299.30

  • Monoclinic, Inline graphic

  • a = 8.5737 (8) Å

  • b = 10.8268 (10) Å

  • c = 15.2490 (13) Å

  • β = 104.070(10)°

  • V = 1371.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8342 measured reflections

  • 2976 independent reflections

  • 2475 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.06

  • 2976 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006254/rk2120sup1.cif

e-65-0o638-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006254/rk2120Isup2.hkl

e-65-0o638-Isup2.hkl (146.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N3 0.93 2.28 2.8807 (16) 122
N1—H1⋯O2 0.881 (9) 1.982 (10) 2.8253 (14) 159.7 (13)
O2—H2A⋯O1i 0.837 (9) 1.909 (10) 2.7426 (13) 173.6 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge financial support by the Huangshi Institute of Technology (grant Nos. 08yjz23B & 07yjz18B), P. R. China.

supplementary crystallographic information

Comment

Quinazolone derivatives have evoked considerable attention in recent years as these are endowed with wide range of pharmaceutical activities. 3H–Quinazolin–4–one represents a useful nucleus for preparation of some new sedative/hypnotic and anticonvulsant agents. Of the various quinazolines reported, the N3 and C7 disubstituted quinazolines exhibit interesting pharmacological activities like analgesic, anti–inflammatory, antibacterial and anticonvulsant activities (Usha et al., 2006). In connection with our ongoing heterocyclic synthesis and drug discovery project (Yang & Wu, 2008), we have focused on the synthesis of quinazolinone and thienopyrimidinones (Wang et al., 2008; Yang et al., 2008). Herein, the title compound was synthesied and its molecular (Fig. 1) and crystal structures were determined. An intramolecular N1—H1···O2 and non–classical C5—H5···N3 hydrogen bonds provide the conformation of the molecule - dihedral angle between the fluoro–substituted benzene ring and pyrimidinone rings as 7.9 (1)°. In the crystal structure, intermolecular O2—H2a···O1i hydrogen bonds link of molecules into chains (see Tab. 1 and Fig. 2). Symmetry code: (i) -x+5/2, y-1/2, -z+1/2.

Experimental

To a solution of 2–ethoxycarbonyliminophosphorane (1.27 g, 3.0 mmol) in 10 ml anhydrous THF, 4–fluorophenyl isocyanate (0.41 g, 3.0 mmol) was added dropwise at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter the above resulting solution was added dropwise to a solution of ethanolamine (0.18 g, 3 mmol) in 5 ml anhydrous THF. The reaction mixture was stirred overnight at room temperature, the solvent was removed under reduced pressure and the residue was recrystallized from C2H4Cl2/CH3OH (1:1/v:v) to give colourless crystals of the title compound. Yield 89%.

Refinement

The C–bonded H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene and refined in the riding model approximation. The positional parameters of N– and O–bonded H atoms were found from difference Fourier map and refined independently. For all H atoms Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom–labeling scheme. Dispalcement ellipsoids are drawn at the 50% probability level. H at6oms are presented as a small spheres of arbitrary radius. Intramolecular hydrogen bonds are drawn by dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing intermolecular hydrogen bonds as dashed lines. Symmetry code: (i) -x+5/2, y-1/2, -z+1/2.

Crystal data

C16H14FN3O2 F(000) = 624
Mr = 299.30 Dx = 1.450 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3320 reflections
a = 8.5737 (8) Å θ = 2.3–29.2°
b = 10.8268 (10) Å µ = 0.11 mm1
c = 15.2490 (13) Å T = 273 K
β = 104.407 (1)° Block, colourless
V = 1371.0 (2) Å3 0.10 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2475 reflections with I > 2σ(I)
Radiation source: Fine–focus sealed tube Rint = 0.021
Graphite θmax = 27.0°, θmin = 2.3°
φ and ω scans h = −10→10
8342 measured reflections k = −12→13
2976 independent reflections l = −19→14

Refinement

Refinement on F2 Primary atom site location: Direct
Least-squares matrix: Full Secondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: Geom
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.157P] where P = (Fo2 + 2Fc2)/3
2976 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.13 e Å3
2 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.56770 (14) 0.34529 (11) −0.09177 (9) 0.0442 (3)
C2 0.59291 (15) 0.34162 (11) 0.00070 (9) 0.0455 (3)
H2 0.5444 0.2813 0.0283 0.055*
C3 0.69136 (15) 0.42908 (11) 0.05135 (8) 0.0427 (3)
H3 0.7096 0.4276 0.1141 0.051*
C4 0.76459 (13) 0.52003 (10) 0.01077 (8) 0.0379 (3)
C5 0.73709 (15) 0.52084 (12) −0.08302 (8) 0.0438 (3)
H5 0.7852 0.5807 −0.1113 0.053*
C6 0.63794 (15) 0.43247 (12) −0.13419 (8) 0.0458 (3)
H6 0.6193 0.4325 −0.1969 0.055*
C7 0.94732 (13) 0.70237 (10) 0.05017 (7) 0.0377 (3)
C8 1.13407 (14) 0.86392 (11) 0.11798 (8) 0.0418 (3)
C9 1.15360 (14) 0.88561 (11) 0.02741 (8) 0.0402 (3)
C10 1.06202 (13) 0.81559 (11) −0.04382 (8) 0.0389 (3)
C11 1.08192 (15) 0.83508 (12) −0.13148 (8) 0.0462 (3)
H11 1.0220 0.7892 −0.1798 0.055*
C12 1.18945 (16) 0.92159 (13) −0.14591 (9) 0.0520 (3)
H12 1.2025 0.9334 −0.2041 0.062*
C13 1.27943 (17) 0.99209 (13) −0.07485 (10) 0.0549 (3)
H13 1.3514 1.0510 −0.0857 0.066*
C14 1.26168 (16) 0.97446 (12) 0.01099 (10) 0.0504 (3)
H14 1.3215 1.0216 0.0586 0.060*
C15 0.97517 (16) 0.76912 (12) 0.21207 (8) 0.0450 (3)
H15A 0.8617 0.7484 0.1999 0.054*
H15B 0.9889 0.8505 0.2395 0.054*
C16 1.06872 (18) 0.67775 (13) 0.27916 (8) 0.0526 (3)
H16A 1.1828 0.6861 0.2827 0.063*
H16B 1.0521 0.6944 0.3387 0.063*
F1 0.46983 (11) 0.25850 (8) −0.14287 (6) 0.0651 (3)
N1 0.85952 (13) 0.60633 (10) 0.07009 (7) 0.0439 (2)
H1 0.8863 (16) 0.5818 (12) 0.1269 (6) 0.053*
N2 1.02153 (12) 0.77481 (9) 0.12481 (6) 0.0393 (2)
N3 0.96041 (12) 0.72240 (9) −0.03130 (6) 0.0411 (2)
O1 1.20713 (12) 0.91951 (9) 0.18653 (6) 0.0565 (3)
O2 1.01772 (12) 0.55593 (9) 0.25230 (6) 0.0546 (3)
H2A 1.0973 (16) 0.5093 (14) 0.2698 (12) 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0436 (6) 0.0404 (6) 0.0481 (7) −0.0004 (5) 0.0105 (5) −0.0022 (5)
C2 0.0492 (7) 0.0396 (6) 0.0504 (7) 0.0018 (5) 0.0174 (6) 0.0082 (5)
C3 0.0499 (7) 0.0442 (6) 0.0356 (6) 0.0072 (5) 0.0135 (5) 0.0067 (5)
C4 0.0379 (6) 0.0404 (6) 0.0360 (6) 0.0046 (5) 0.0104 (5) 0.0012 (5)
C5 0.0492 (7) 0.0480 (7) 0.0357 (6) −0.0038 (5) 0.0132 (5) 0.0024 (5)
C6 0.0508 (7) 0.0519 (7) 0.0352 (6) −0.0028 (6) 0.0114 (5) −0.0017 (5)
C7 0.0370 (6) 0.0411 (6) 0.0333 (6) 0.0052 (5) 0.0058 (4) 0.0015 (5)
C8 0.0416 (6) 0.0426 (6) 0.0409 (6) 0.0040 (5) 0.0094 (5) −0.0044 (5)
C9 0.0388 (6) 0.0399 (6) 0.0420 (6) 0.0059 (5) 0.0102 (5) 0.0020 (5)
C10 0.0377 (6) 0.0406 (6) 0.0376 (6) 0.0065 (5) 0.0080 (5) 0.0053 (5)
C11 0.0476 (7) 0.0538 (7) 0.0351 (6) 0.0046 (6) 0.0060 (5) 0.0081 (5)
C12 0.0531 (7) 0.0602 (8) 0.0442 (7) 0.0058 (6) 0.0149 (6) 0.0147 (6)
C13 0.0513 (8) 0.0542 (8) 0.0607 (9) −0.0035 (6) 0.0168 (6) 0.0112 (7)
C14 0.0489 (7) 0.0483 (7) 0.0536 (8) −0.0022 (6) 0.0121 (6) −0.0010 (6)
C15 0.0535 (7) 0.0494 (7) 0.0348 (6) 0.0053 (6) 0.0160 (5) −0.0031 (5)
C16 0.0621 (8) 0.0616 (8) 0.0327 (6) 0.0034 (6) 0.0092 (6) −0.0009 (6)
F1 0.0736 (6) 0.0599 (5) 0.0592 (5) −0.0229 (4) 0.0116 (4) −0.0068 (4)
N1 0.0521 (6) 0.0494 (6) 0.0297 (5) −0.0036 (5) 0.0092 (4) 0.0026 (4)
N2 0.0434 (5) 0.0436 (5) 0.0316 (5) 0.0037 (4) 0.0104 (4) −0.0013 (4)
N3 0.0436 (5) 0.0456 (6) 0.0331 (5) 0.0000 (4) 0.0077 (4) 0.0028 (4)
O1 0.0601 (6) 0.0639 (6) 0.0450 (5) −0.0115 (5) 0.0123 (4) −0.0152 (4)
O2 0.0629 (6) 0.0552 (6) 0.0421 (5) 0.0091 (4) 0.0062 (4) 0.0055 (4)

Geometric parameters (Å, °)

C1—C6 1.3659 (17) C9—C14 1.4007 (17)
C1—F1 1.3670 (14) C10—N3 1.3771 (15)
C1—C2 1.3729 (18) C10—C11 1.4050 (16)
C2—C3 1.3716 (18) C11—C12 1.3699 (19)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.3929 (16) C12—C13 1.391 (2)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.3904 (16) C13—C14 1.3683 (19)
C4—N1 1.4098 (15) C13—H13 0.9300
C5—C6 1.3846 (17) C14—H14 0.9300
C5—H5 0.9300 C15—N2 1.4817 (14)
C6—H6 0.9300 C15—C16 1.5035 (18)
C7—N3 1.2932 (14) C15—H15A 0.9700
C7—N1 1.3616 (15) C15—H15B 0.9700
C7—N2 1.3983 (15) C16—O2 1.4174 (17)
C8—O1 1.2335 (14) C16—H16A 0.9700
C8—N2 1.3866 (15) C16—H16B 0.9700
C8—C9 1.4511 (16) N1—H1 0.881 (9)
C9—C10 1.3952 (16) O2—H2A 0.837 (9)
C6—C1—F1 119.04 (11) C12—C11—H11 120.0
C6—C1—C2 122.08 (12) C10—C11—H11 120.0
F1—C1—C2 118.88 (11) C11—C12—C13 120.99 (12)
C3—C2—C1 118.42 (11) C11—C12—H12 119.5
C3—C2—H2 120.8 C13—C12—H12 119.5
C1—C2—H2 120.8 C14—C13—C12 119.76 (12)
C2—C3—C4 121.34 (11) C14—C13—H13 120.1
C2—C3—H3 119.3 C12—C13—H13 120.1
C4—C3—H3 119.3 C13—C14—C9 120.19 (13)
C5—C4—C3 118.79 (11) C13—C14—H14 119.9
C5—C4—N1 125.37 (11) C9—C14—H14 119.9
C3—C4—N1 115.82 (10) N2—C15—C16 114.93 (10)
C6—C5—C4 119.90 (11) N2—C15—H15A 108.5
C6—C5—H5 120.0 C16—C15—H15A 108.5
C4—C5—H5 120.0 N2—C15—H15B 108.5
C1—C6—C5 119.46 (11) C16—C15—H15B 108.5
C1—C6—H6 120.3 H15A—C15—H15B 107.5
C5—C6—H6 120.3 O2—C16—C15 109.98 (11)
N3—C7—N1 121.83 (11) O2—C16—H16A 109.7
N3—C7—N2 123.86 (10) C15—C16—H16A 109.7
N1—C7—N2 114.31 (10) O2—C16—H16B 109.7
O1—C8—N2 119.47 (11) C15—C16—H16B 109.7
O1—C8—C9 124.96 (11) H16A—C16—H16B 108.2
N2—C8—C9 115.56 (10) C7—N1—C4 128.75 (10)
C10—C9—C14 120.21 (11) C7—N1—H1 115.3 (9)
C10—C9—C8 118.50 (11) C4—N1—H1 113.5 (9)
C14—C9—C8 121.29 (11) C8—N2—C7 120.89 (10)
N3—C10—C9 122.90 (10) C8—N2—C15 116.33 (10)
N3—C10—C11 118.21 (11) C7—N2—C15 122.56 (10)
C9—C10—C11 118.75 (11) C7—N3—C10 117.72 (10)
C12—C11—C10 120.09 (12) C16—O2—H2A 107.5 (13)
C6—C1—C2—C3 0.31 (19) C12—C13—C14—C9 0.1 (2)
F1—C1—C2—C3 179.97 (10) C10—C9—C14—C13 −0.76 (19)
C1—C2—C3—C4 0.08 (18) C8—C9—C14—C13 179.16 (12)
C2—C3—C4—C5 −0.34 (18) N2—C15—C16—O2 −74.18 (14)
C2—C3—C4—N1 178.41 (11) N3—C7—N1—C4 −3.84 (19)
C3—C4—C5—C6 0.23 (18) N2—C7—N1—C4 176.74 (11)
N1—C4—C5—C6 −178.39 (11) C5—C4—N1—C7 −3.0 (2)
F1—C1—C6—C5 179.92 (11) C3—C4—N1—C7 178.32 (11)
C2—C1—C6—C5 −0.42 (19) O1—C8—N2—C7 −174.16 (11)
C4—C5—C6—C1 0.14 (19) C9—C8—N2—C7 6.98 (16)
O1—C8—C9—C10 −179.80 (11) O1—C8—N2—C15 11.04 (16)
N2—C8—C9—C10 −1.02 (16) C9—C8—N2—C15 −167.81 (10)
O1—C8—C9—C14 0.28 (19) N3—C7—N2—C8 −9.29 (17)
N2—C8—C9—C14 179.06 (11) N1—C7—N2—C8 170.11 (10)
C14—C9—C10—N3 176.35 (11) N3—C7—N2—C15 165.17 (11)
C8—C9—C10—N3 −3.57 (17) N1—C7—N2—C15 −15.43 (15)
C14—C9—C10—C11 0.73 (17) C16—C15—N2—C8 −94.13 (13)
C8—C9—C10—C11 −179.20 (10) C16—C15—N2—C7 91.16 (14)
N3—C10—C11—C12 −175.91 (11) N1—C7—N3—C10 −174.89 (10)
C9—C10—C11—C12 −0.08 (18) N2—C7—N3—C10 4.47 (17)
C10—C11—C12—C13 −0.6 (2) C9—C10—N3—C7 1.96 (17)
C11—C12—C13—C14 0.5 (2) C11—C10—N3—C7 177.61 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···N3 0.93 2.28 2.8807 (16) 122
N1—H1···O2 0.88 (1) 1.98 (1) 2.8253 (14) 160 (1)
O2—H2A···O1i 0.84 (1) 1.91 (1) 2.7426 (13) 174 (2)

Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2120).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Usha, A., Swati, O., Dinesh, B. & Ganpat, L. T. (2006). ARKIVOC, xiii, 83–89.
  4. Wang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325. [DOI] [PMC free article] [PubMed]
  5. Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2240. [DOI] [PMC free article] [PubMed]
  6. Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem.5, 1365–1369.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006254/rk2120sup1.cif

e-65-0o638-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006254/rk2120Isup2.hkl

e-65-0o638-Isup2.hkl (146.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES