Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):o500. doi: 10.1107/S1600536809004152

3-(4-Fluoro­benz­yl)-1H-isochromene-1-thione

Tariq Mahmood Babar a, Ghulam Qadeer a,*, Nasim Hasan Rama a,, Muhammad Khawar Rauf a, Wai-Yeung Wong b,§
PMCID: PMC2968631  PMID: 21582165

Abstract

In the mol­ecule of the title compound, C16H11FOS, the benzene ring is oriented at a dihedral angle of 89.68 (3)° with respect to the planar [maximum deviation 0.009 (2) Å] isocoumarin ring system. An intra­molecular C—H⋯S inter­action results in the formation of a planar five-membered ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the c axis. A π–π contact between the isocoumarin rings [centroid–centroid distance = 3.818 (3) Å] may further stabilize the structure.

Related literature

For general background, see: Barry (1964); Sturtz et al. (2002); Rossi et al. (2003); Powers et al. (2002); Thomas & Jens (1999). For a related structure, see: Abid et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o500-scheme1.jpg

Experimental

Crystal data

  • C16H11FOS

  • M r = 270.31

  • Monoclinic, Inline graphic

  • a = 8.7346 (6) Å

  • b = 17.9516 (11) Å

  • c = 8.4481 (5) Å

  • β = 95.026 (1)°

  • V = 1319.57 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.805, T max = 0.952

  • 7856 measured reflections

  • 3188 independent reflections

  • 2655 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.150

  • S = 1.03

  • 3188 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004152/hk2617sup1.cif

e-65-0o500-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004152/hk2617Isup2.hkl

e-65-0o500-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯S1 0.93 2.78 3.142 (2) 105
C3—H3A⋯O1i 0.93 2.60 3.529 (2) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory (Powers et al., 2002) activities. Naturally occurring halo-isocoumarins and their halogeno-3,4-dihydroiscoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing 4-fluorobenzyl substituent has been synthesized, and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C1-C6), B (O1/C5-C9) and C (C11-C16) are, of course, planar and the dihedral angles between them are A/B = 0.29 (3)°, A/C = 89.77 (4)° and B/C = 89.53 (3)°. The intramolecular C-H···S interaction (Table 1) results in the formation of a planar five-membered ring D (S1/C1/C6/C7/H1A).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the c-axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the isocoumarine rings, Cg1—Cg2i [symmetry code: (i) -x, -y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (O1/C5-C9), respectively] may further stabilize the structure, with centroid-centroid distance of 3.818 (3) Å.

Experimental

As shown in Scheme 2, the title compound was synthesized by refluxing 3-(4-fluorobenzyl)-1H-isochromen-1-one (0.5 g, 1.8 mmol) with Lawesson's reagent (0.89 g, 2.2 mmol) in dry toluene for 4 h. Pure thioisocoumarin was obtained by recrystalization in methanol (yield; 90%, m.p. 665-667 K).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C16H11FOS F(000) = 560
Mr = 270.31 Dx = 1.361 Mg m3
Monoclinic, P21/c Melting point: 392(2) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.7346 (6) Å Cell parameters from 1423 reflections
b = 17.9516 (11) Å θ = 4.2–25.4°
c = 8.4481 (5) Å µ = 0.25 mm1
β = 95.026 (1)° T = 294 K
V = 1319.57 (14) Å3 Block, yellow
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3188 independent reflections
Radiation source: fine-focus sealed tube 2655 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.805, Tmax = 0.952 k = −23→22
7856 measured reflections l = −8→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0856P)2 + 0.2983P] where P = (Fo2 + 2Fc2)/3
3188 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.07012 (6) 0.65948 (3) 0.36335 (6) 0.0646 (2)
O1 0.20272 (15) 0.53300 (6) 0.37410 (13) 0.0506 (3)
F1 0.51024 (16) 0.13358 (7) 0.29180 (19) 0.0845 (4)
C1 0.0938 (2) 0.63191 (10) −0.0010 (2) 0.0563 (4)
H1A 0.0472 0.6745 0.0350 0.068*
C2 0.1045 (3) 0.62201 (12) −0.1609 (2) 0.0665 (5)
H2A 0.0656 0.6581 −0.2326 0.080*
C3 0.1727 (3) 0.55866 (12) −0.2156 (2) 0.0706 (6)
H3A 0.1785 0.5521 −0.3241 0.085*
C4 0.2320 (3) 0.50543 (11) −0.1113 (2) 0.0656 (5)
H4A 0.2784 0.4633 −0.1496 0.079*
C5 0.2234 (2) 0.51390 (9) 0.05279 (18) 0.0483 (4)
C6 0.15271 (18) 0.57814 (8) 0.10781 (17) 0.0439 (3)
C7 0.14344 (18) 0.58791 (9) 0.27669 (18) 0.0446 (3)
C8 0.2707 (2) 0.46929 (8) 0.32005 (19) 0.0482 (4)
C9 0.2829 (2) 0.45929 (9) 0.1661 (2) 0.0523 (4)
H9A 0.3304 0.4166 0.1313 0.063*
C10 0.3182 (3) 0.41971 (10) 0.4583 (2) 0.0615 (5)
H10A 0.2320 0.4141 0.5222 0.074*
H10B 0.4006 0.4438 0.5237 0.074*
C11 0.3716 (2) 0.34333 (9) 0.4123 (2) 0.0515 (4)
C12 0.5239 (3) 0.32831 (12) 0.3957 (3) 0.0741 (6)
H12A 0.5961 0.3662 0.4129 0.089*
C13 0.5718 (2) 0.25794 (14) 0.3540 (3) 0.0799 (7)
H13A 0.6748 0.2483 0.3421 0.096*
C14 0.4648 (2) 0.20356 (10) 0.3309 (2) 0.0585 (4)
C15 0.3136 (2) 0.21543 (11) 0.3461 (3) 0.0671 (5)
H15A 0.2425 0.1771 0.3292 0.081*
C16 0.2677 (2) 0.28622 (11) 0.3875 (3) 0.0644 (5)
H16A 0.1644 0.2952 0.3987 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0761 (4) 0.0604 (3) 0.0583 (3) 0.0200 (2) 0.0112 (2) −0.0054 (2)
O1 0.0702 (8) 0.0431 (6) 0.0390 (5) 0.0077 (5) 0.0071 (5) −0.0006 (4)
F1 0.0826 (9) 0.0557 (7) 0.1132 (11) 0.0188 (6) −0.0030 (8) −0.0146 (7)
C1 0.0629 (11) 0.0529 (9) 0.0526 (9) 0.0022 (8) 0.0028 (7) 0.0071 (7)
C2 0.0840 (14) 0.0661 (11) 0.0485 (9) −0.0040 (10) −0.0003 (9) 0.0157 (9)
C3 0.1044 (17) 0.0684 (12) 0.0396 (8) −0.0116 (11) 0.0106 (9) 0.0040 (8)
C4 0.1026 (16) 0.0520 (9) 0.0441 (9) −0.0023 (10) 0.0173 (9) −0.0040 (7)
C5 0.0635 (10) 0.0415 (7) 0.0408 (7) −0.0063 (7) 0.0093 (7) −0.0009 (6)
C6 0.0473 (8) 0.0431 (7) 0.0412 (7) −0.0052 (6) 0.0042 (6) 0.0012 (6)
C7 0.0462 (8) 0.0438 (7) 0.0437 (7) −0.0001 (6) 0.0043 (6) 0.0000 (6)
C8 0.0623 (10) 0.0364 (7) 0.0460 (8) 0.0016 (6) 0.0053 (7) −0.0004 (6)
C9 0.0713 (11) 0.0383 (7) 0.0484 (8) 0.0032 (7) 0.0110 (7) −0.0020 (6)
C10 0.0910 (14) 0.0465 (9) 0.0466 (9) 0.0090 (9) 0.0037 (8) 0.0035 (7)
C11 0.0653 (10) 0.0424 (8) 0.0464 (8) 0.0041 (7) 0.0019 (7) 0.0069 (6)
C12 0.0598 (12) 0.0560 (11) 0.1061 (18) −0.0107 (9) 0.0047 (11) −0.0067 (11)
C13 0.0506 (11) 0.0685 (13) 0.121 (2) 0.0047 (9) 0.0111 (12) −0.0073 (13)
C14 0.0621 (11) 0.0453 (8) 0.0666 (11) 0.0093 (7) −0.0027 (8) −0.0016 (8)
C15 0.0561 (11) 0.0462 (9) 0.0976 (15) −0.0034 (8) −0.0018 (10) −0.0022 (9)
C16 0.0508 (10) 0.0538 (10) 0.0891 (14) 0.0065 (8) 0.0080 (9) 0.0029 (9)

Geometric parameters (Å, °)

C1—C2 1.373 (3) C8—C10 1.498 (2)
C1—C6 1.400 (2) C9—H9A 0.9300
C1—H1A 0.9300 C10—C11 1.510 (2)
C2—C3 1.382 (3) C10—H10A 0.9700
C2—H2A 0.9300 C10—H10B 0.9700
C3—C4 1.370 (3) C11—C16 1.373 (3)
C3—H3A 0.9300 C11—C12 1.376 (3)
C4—C5 1.403 (2) C12—C13 1.386 (3)
C4—H4A 0.9300 C12—H12A 0.9300
C5—C6 1.406 (2) C13—C14 1.353 (3)
C5—C9 1.435 (2) C13—H13A 0.9300
C6—C7 1.447 (2) C14—C15 1.355 (3)
C7—O1 1.3573 (19) C14—F1 1.367 (2)
C7—S1 1.6367 (16) C15—C16 1.387 (3)
C8—C9 1.327 (2) C15—H15A 0.9300
C8—O1 1.3843 (18) C16—H16A 0.9300
C2—C1—C6 120.26 (18) C5—C9—H9A 119.8
C2—C1—H1A 119.9 C8—C10—C11 114.22 (15)
C6—C1—H1A 119.9 C8—C10—H10A 108.7
C1—C2—C3 120.26 (18) C11—C10—H10A 108.7
C1—C2—H2A 119.9 C8—C10—H10B 108.7
C3—C2—H2A 119.9 C11—C10—H10B 108.7
C4—C3—C2 120.55 (17) H10A—C10—H10B 107.6
C4—C3—H3A 119.7 C16—C11—C12 118.03 (17)
C2—C3—H3A 119.7 C16—C11—C10 120.16 (18)
C3—C4—C5 120.66 (18) C12—C11—C10 121.81 (18)
C3—C4—H4A 119.7 C11—C12—C13 121.35 (19)
C5—C4—H4A 119.7 C11—C12—H12A 119.3
C4—C5—C6 118.58 (15) C13—C12—H12A 119.3
C4—C5—C9 122.49 (16) C14—C13—C12 118.3 (2)
C6—C5—C9 118.92 (14) C14—C13—H13A 120.8
C1—C6—C5 119.68 (15) C12—C13—H13A 120.8
C1—C6—C7 121.00 (15) C13—C14—C15 122.61 (18)
C5—C6—C7 119.31 (14) C13—C14—F1 119.12 (18)
O1—C7—C6 117.29 (13) C15—C14—F1 118.27 (18)
O1—C7—S1 116.25 (11) C14—C15—C16 118.29 (18)
C6—C7—S1 126.45 (12) C14—C15—H15A 120.9
C9—C8—O1 120.60 (14) C16—C15—H15A 120.9
C9—C8—C10 130.03 (16) C11—C16—C15 121.39 (18)
O1—C8—C10 109.36 (13) C11—C16—H16A 119.3
C8—C9—C5 120.38 (15) C15—C16—H16A 119.3
C8—C9—H9A 119.8 C7—O1—C8 123.49 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···S1 0.93 2.78 3.142 (2) 105
C3—H3A···O1i 0.93 2.60 3.529 (2) 178

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2617).

References

  1. Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Barry, R. D. (1964). Chem. Rev.64, 239–241.
  4. Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev.102, 4639–4643. [DOI] [PubMed]
  8. Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem.50, 6979–6984. [DOI] [PubMed]
  12. Thomas, L. & Jens, B. J. (1999). Nat. Prod.62, 1182–1187.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004152/hk2617sup1.cif

e-65-0o500-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004152/hk2617Isup2.hkl

e-65-0o500-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES