Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):m308–m309. doi: 10.1107/S1600536809005637

Potassium oxalurate monohydrate

Lian-Feng Zhang a,*
PMCID: PMC2968634  PMID: 21582086

Abstract

The title salt, poly[aqua-μ3-oxalurato-potassium(I)], [K(C3H3N2O4)(H2O)]n, which was obtained from a water solution of oxaluric acid and KOH at room temperature, crystallizes as potassium and oxalurate ions along with a water mol­ecule. The K+ cation lies on a crystallographic twofold rotation axis (site symmetry 2, Wyckoff position f), and the water and oxalurate mol­ecules are located within different mirror planes (site symmetry m, Wyckoff position g). The K+ cation is eight-coordinated by six O atoms of six oxalurate ligands and two O atoms from two water mol­ecules in a distorted square-anti­prismatic geometry. All of the eight coordinated O atoms are in a monodentate bridging mode, with alternate bridged K⋯K distances of 3.5575 (12) and 3.3738 (12) Å. The oxalurate ligand shows a μ3-bridging coordination mode, which links the K+ cation into a three-dimensional network. The oxalurate ligands and the water mol­ecules are involved in inter- and intra­molecular N—H⋯O, and O—H⋯O hydrogen bonds, which stabilize the network.

Related literature

For oxalurate metal complexes, see: Falvello et al. (2002). For elongated K—O bonds, see: Karapetyan (2008); Kunz et al. (2009).graphic file with name e-65-0m308-scheme1.jpg

Experimental

Crystal data

  • [K(C3H3N2O4)(H2O)]

  • M r = 188.19

  • Orthorhombic, Inline graphic

  • a = 7.7313 (17) Å

  • b = 12.799 (3) Å

  • c = 6.9313 (16) Å

  • V = 685.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.748, T max = 0.816

  • 3320 measured reflections

  • 699 independent reflections

  • 633 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.077

  • S = 1.09

  • 699 reflections

  • 66 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005637/si2155sup1.cif

e-65-0m308-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005637/si2155Isup2.hkl

e-65-0m308-Isup2.hkl (35KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

K1—O1 2.7291 (11)
K1—O3i 2.7812 (11)
K1—O5 2.8458 (13)
K1—O4ii 2.9775 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4iii 0.86 2.10 2.936 (2) 164
N2—H2A⋯O1iv 0.86 2.17 2.997 (2) 163
N2—H2A⋯O2iv 0.86 2.37 3.069 (2) 139
N2—H2B⋯O3 0.86 2.01 2.667 (2) 133
N2—H2B⋯O5v 0.86 2.38 3.076 (3) 138
O5—H1W⋯O2i 0.83 1.97 2.791 (2) 172
O5—H1W⋯O3i 0.83 2.59 3.068 (2) 118
O5—H2W⋯O2vi 0.83 2.14 2.973 (2) 178

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank Nan Yang Normal University for supporting this work.

supplementary crystallographic information

Comment

Oxaluric acid is the condensation product of oxalic acid and urea. Deprotonated oxalurate possesses four oxygen atoms and two amine N atoms, which can serve as hydrogen-bond acceptors and hydrogen-bond donors, respectively. In addition, one or more of six different atoms can bind to metal centers in any of at least three distinct coordination modes, namely, chelating, terminal, or bridging coordination (Falvello, 2002).

As shown in Fig. 1, the asymmetric structure unit consists of one K+ cation, one C3H3N2O4- anion, and one water molecule. The K+ cation is surrounded by six oxalurate ligands and two water molecules, making close contacts with eight O atoms at 2.7291 (11)–2.9775 (13) A ° in a distorted square antiprismatic geometry of the central atom (Karapetyan, 2008; Kunz, 2009) (Table 1). All the eight coordinated O atoms are in the monodentate bridging mode, with the bridged K···K distance of 3.558 (1) and 3.374 (1) Å alternately. The oxalurate ligand, which is planar, shows a µ3-bridging coordination mode and links the K+ cation into a three-dimensional network (Fig. 2). The oxalurate ligands and water molecules are involved in inter- and intramolecular N—H···O, and O—H···O hydrogen bonds, which stabilize the network (Table 2).

Experimental

A 10 ml sample of a KOH solution (0.5 mol/L) was added to a water suspension of oxaluric acid, HOOCCONHCONH2 (0.5 mmol/10 ml). The KOH addition produced a partial solubilization of the acid and then the precipitation of a white solid. After 20 min of stirring, the solid was filtered off, washed with i-PrOH. The single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into the water solution of the solid.

Refinement

Water H atoms were located in a difference Fourier and allowed to ride at the value approximately 0.83 Å with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å (NH and NH2) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

A perspective view of the asymmetric unit, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the compound packing down the a axis.

Crystal data

[K(C3H3N2O4)(H2O)] F(000) = 384
Mr = 188.19 Dx = 1.823 Mg m3
Orthorhombic, Pnnm Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2n Cell parameters from 1939 reflections
a = 7.7313 (17) Å θ = 2.9–28.2°
b = 12.799 (3) Å µ = 0.75 mm1
c = 6.9313 (16) Å T = 296 K
V = 685.9 (3) Å3 Block, pink
Z = 4 0.41 × 0.39 × 0.28 mm

Data collection

Bruker SMART CCD area-detector diffractometer 699 independent reflections
Radiation source: fine-focus sealed tube 633 reflections with I > 2σ(I)
graphite Rint = 0.013
φ and ω scans θmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −9→9
Tmin = 0.748, Tmax = 0.816 k = −15→15
3320 measured reflections l = −8→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.2142P] where P = (Fo2 + 2Fc2)/3
699 reflections (Δ/σ)max < 0.001
66 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.34 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 1.0000 0.5000 0.24337 (6) 0.0336 (2)
O1 0.89541 (18) 0.34475 (10) 0.0000 0.0329 (4)
O2 0.90620 (19) 0.17010 (11) 0.0000 0.0478 (5)
O3 0.55768 (18) 0.16337 (10) 0.0000 0.0349 (4)
O4 0.30509 (18) 0.44721 (10) 0.0000 0.0396 (4)
N1 0.5439 (2) 0.34235 (12) 0.0000 0.0278 (4)
H1 0.6069 0.3977 0.0000 0.033*
N2 0.2646 (2) 0.27328 (14) 0.0000 0.0414 (5)
H2A 0.1538 0.2794 0.0000 0.050*
H2B 0.3111 0.2122 0.0000 0.050*
C1 0.8300 (3) 0.25554 (15) 0.0000 0.0266 (5)
C2 0.6290 (2) 0.24914 (14) 0.0000 0.0239 (4)
C3 0.3632 (2) 0.35754 (14) 0.0000 0.0281 (5)
O5 0.7184 (2) 0.46547 (13) 0.5000 0.0490 (5)
H1W 0.6919 0.5284 0.5000 0.073*
H2W 0.6298 0.4287 0.5000 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0406 (3) 0.0241 (3) 0.0362 (4) −0.00314 (16) 0.000 0.000
O1 0.0213 (7) 0.0206 (7) 0.0567 (10) −0.0038 (5) 0.000 0.000
O2 0.0210 (7) 0.0224 (7) 0.0999 (15) 0.0037 (6) 0.000 0.000
O3 0.0226 (7) 0.0171 (7) 0.0650 (11) −0.0027 (6) 0.000 0.000
O4 0.0227 (7) 0.0203 (7) 0.0758 (12) 0.0033 (6) 0.000 0.000
N1 0.0175 (8) 0.0165 (8) 0.0493 (11) −0.0020 (6) 0.000 0.000
N2 0.0172 (8) 0.0219 (8) 0.0852 (16) 0.0006 (7) 0.000 0.000
C1 0.0194 (10) 0.0224 (9) 0.0379 (11) −0.0015 (7) 0.000 0.000
C2 0.0197 (10) 0.0190 (9) 0.0330 (11) −0.0007 (7) 0.000 0.000
C3 0.0184 (9) 0.0221 (9) 0.0438 (13) 0.0014 (7) 0.000 0.000
O5 0.0247 (8) 0.0271 (8) 0.0952 (14) 0.0024 (7) 0.000 0.000

Geometric parameters (Å, °)

K1—O1 2.7291 (11) O3—K1vii 2.7812 (11)
K1—O1i 2.7291 (11) O3—K1viii 2.7812 (11)
K1—O3ii 2.7812 (11) O4—C3 1.232 (2)
K1—O3iii 2.7812 (11) O4—K1v 2.9775 (13)
K1—O5iv 2.8458 (13) O4—K1ix 2.9775 (13)
K1—O5 2.8458 (13) N1—C2 1.362 (2)
K1—O4v 2.9775 (13) N1—C3 1.410 (2)
K1—O4vi 2.9775 (13) N1—H1 0.8600
K1—K1i 3.3738 (12) N2—C3 1.321 (3)
K1—K1iv 3.5575 (12) N2—H2A 0.8600
K1—H1W 2.9950 N2—H2B 0.8600
O1—C1 1.249 (2) C1—C2 1.556 (3)
O1—K1i 2.7291 (11) O5—K1iv 2.8458 (13)
O2—C1 1.242 (2) O5—H1W 0.8312
O3—C2 1.228 (2) O5—H2W 0.8317
O1—K1—O1i 103.64 (4) O3ii—K1—K1iv 50.24 (2)
O1—K1—O3ii 153.54 (4) O3iii—K1—K1iv 50.24 (2)
O1i—K1—O3ii 84.00 (3) O5iv—K1—K1iv 51.32 (2)
O1—K1—O3iii 84.00 (3) O5—K1—K1iv 51.32 (2)
O1i—K1—O3iii 153.54 (4) O4v—K1—K1iv 124.509 (19)
O3ii—K1—O3iii 100.48 (4) O4vi—K1—K1iv 124.509 (19)
O1—K1—O5iv 136.56 (4) K1i—K1—K1iv 180.0
O1i—K1—O5iv 92.67 (4) C1—O1—K1 141.79 (2)
O3ii—K1—O5iv 66.81 (4) C1—O1—K1i 141.79 (2)
O3iii—K1—O5iv 66.07 (4) K1—O1—K1i 76.36 (4)
O1—K1—O5 92.67 (4) C2—O3—K1vii 138.06 (4)
O1i—K1—O5 136.56 (4) C2—O3—K1viii 138.06 (4)
O3ii—K1—O5 66.07 (4) K1vii—O3—K1viii 79.52 (4)
O3iii—K1—O5 66.81 (4) C3—O4—K1v 120.01 (9)
O5iv—K1—O5 102.63 (4) C3—O4—K1ix 120.01 (9)
O1—K1—O4v 65.19 (4) K1v—O4—K1ix 69.02 (4)
O1i—K1—O4v 73.70 (4) C2—N1—C3 126.81 (16)
O3ii—K1—O4v 93.71 (3) C2—N1—H1 116.6
O3iii—K1—O4v 131.30 (4) C3—N1—H1 116.6
O5iv—K1—O4v 157.65 (5) C3—N2—H2A 120.0
O5—K1—O4v 77.49 (3) C3—N2—H2B 120.0
O1—K1—O4vi 73.70 (4) H2A—N2—H2B 120.0
O1i—K1—O4vi 65.19 (4) O2—C1—O1 127.80 (18)
O3ii—K1—O4vi 131.30 (4) O2—C1—C2 115.29 (17)
O3iii—K1—O4vi 93.71 (3) O1—C1—C2 116.91 (17)
O5iv—K1—O4vi 77.49 (3) O3—C2—N1 124.44 (17)
O5—K1—O4vi 157.65 (5) O3—C2—C1 119.70 (17)
O4v—K1—O4vi 110.98 (4) N1—C2—C1 115.87 (16)
O1—K1—K1i 51.82 (2) O4—C3—N2 123.36 (18)
O1i—K1—K1i 51.82 (2) O4—C3—N1 119.31 (17)
O3ii—K1—K1i 129.76 (2) N2—C3—N1 117.34 (17)
O3iii—K1—K1i 129.76 (2) K1iv—O5—K1 77.37 (4)
O5iv—K1—K1i 128.68 (2) K1iv—O5—H1W 92.2
O5—K1—K1i 128.68 (2) K1—O5—H1W 92.2
O4v—K1—K1i 55.491 (19) K1iv—O5—H2W 135.9
O4vi—K1—K1i 55.491 (19) K1—O5—H2W 135.9
O1—K1—K1iv 128.18 (2) H1W—O5—H2W 110.2
O1i—K1—K1iv 128.18 (2)
O1i—K1—O1—C1 −177.2 (2) K1vii—O3—C2—C1 −73.10 (14)
O3ii—K1—O1—C1 −72.9 (2) K1viii—O3—C2—C1 73.10 (14)
O3iii—K1—O1—C1 28.56 (19) C3—N1—C2—O3 0.0
O5iv—K1—O1—C1 73.8 (2) C3—N1—C2—C1 180.0
O5—K1—O1—C1 −37.78 (19) O2—C1—C2—O3 0.0
O4v—K1—O1—C1 −112.67 (19) O1—C1—C2—O3 180.0
O4vi—K1—O1—C1 124.22 (19) O2—C1—C2—N1 180.0
K1i—K1—O1—C1 −177.2 (2) O1—C1—C2—N1 0.0
K1iv—K1—O1—C1 2.8 (2) K1v—O4—C3—N2 −40.86 (6)
O1i—K1—O1—K1i 0.0 K1ix—O4—C3—N2 40.86 (6)
O3ii—K1—O1—K1i 104.25 (5) K1v—O4—C3—N1 139.14 (6)
O3iii—K1—O1—K1i −154.26 (4) K1ix—O4—C3—N1 −139.14 (6)
O5iv—K1—O1—K1i −109.03 (4) C2—N1—C3—O4 180.0
O5—K1—O1—K1i 139.40 (3) C2—N1—C3—N2 0.0
O4v—K1—O1—K1i 64.50 (3) O1—K1—O5—K1iv 139.06 (3)
O4vi—K1—O1—K1i −58.60 (3) O1i—K1—O5—K1iv −107.82 (4)
K1iv—K1—O1—K1i 180.0 O3ii—K1—O5—K1iv −57.25 (3)
K1—O1—C1—O2 −92.22 (16) O3iii—K1—O5—K1iv 56.75 (3)
K1i—O1—C1—O2 92.22 (16) O5iv—K1—O5—K1iv 0.0
K1—O1—C1—C2 87.78 (16) O4v—K1—O5—K1iv −157.09 (5)
K1i—O1—C1—C2 −87.78 (16) O4vi—K1—O5—K1iv 87.77 (8)
K1vii—O3—C2—N1 106.90 (14) K1i—K1—O5—K1iv 180.0
K1viii—O3—C2—N1 −106.90 (14)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, z−1/2; (viii) −x+3/2, y−1/2, −z+1/2; (ix) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4v 0.86 2.10 2.936 (2) 164
N2—H2A···O1ix 0.86 2.17 2.997 (2) 163
N2—H2A···O2ix 0.86 2.37 3.069 (2) 139
N2—H2B···O3 0.86 2.01 2.667 (2) 133
N2—H2B···O5vii 0.86 2.38 3.076 (3) 138
O5—H1W···O2ii 0.83 1.97 2.791 (2) 172
O5—H1W···O3ii 0.83 2.59 3.068 (2) 118
O5—H2W···O2x 0.83 2.14 2.973 (2) 178

Symmetry codes: (v) −x+1, −y+1, −z; (ix) x−1, y, z; (vii) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (x) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2155).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  2. Falvello, L. R., Garde, R. & Tomás, M. (2002). Inorg. Chem.41, 4599–4604. [DOI] [PubMed]
  3. Karapetyan, H. A. (2008). Acta Cryst. E64, m1369. [DOI] [PMC free article] [PubMed]
  4. Kunz, K., Lerner, H.-W. & Bolte, M. (2009). Acta Cryst. E65, m171. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005637/si2155sup1.cif

e-65-0m308-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005637/si2155Isup2.hkl

e-65-0m308-Isup2.hkl (35KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES