Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o577. doi: 10.1107/S1600536809005753

N′-(2-Methoxy­benzyl­idene)-2-nitro­benzo­hydrazide

Ge-Jiang Xiao a,*, Chao Wei a
PMCID: PMC2968637  PMID: 21582232

Abstract

The title compound, C15H13N3O4, was synthesized by the reaction of equimolar quanti­ties of 2-methoxy­benzaldehyde and 2-nitro­benzohydrazide in methanol. The dihedral angle between the two substituted benzene rings is 68.3 (2)°. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For the pharmacological properties of hydrazone compounds, see: Beraldo & Gambino (2004). For related structures, see: Galić et al. (2001); Richardson & Bernhardt (1999); Ali et al. (2004). For bond length data, see: Allen et al. (1987).graphic file with name e-65-0o577-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O4

  • M r = 299.28

  • Triclinic, Inline graphic

  • a = 7.491 (2) Å

  • b = 9.427 (3) Å

  • c = 10.977 (3) Å

  • α = 91.748 (4)°

  • β = 106.218 (4)°

  • γ = 92.221 (4)°

  • V = 743.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.22 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.978, T max = 0.979

  • 6232 measured reflections

  • 3140 independent reflections

  • 2018 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.132

  • S = 1.03

  • 3140 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005753/sj2574sup1.cif

e-65-0o577-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005753/sj2574Isup2.hkl

e-65-0o577-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.910 (9) 1.943 (10) 2.844 (2) 170.3 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by Changsha University of Science and Technology (project No. 1004091).

supplementary crystallographic information

Comment

Hydrazone compounds have received considerable attention due to their pharmacological properties (Beraldo & Gambino, 2004). In the last few years, the crystal structures and properties of a series of hydrazone compounds have been reported (Galić et al., 2001; Richardson & Bernhardt, 1999; Ali et al., 2004). As a continuation of work on these compounds, we report here the structure of the title compound, (I) Fig. 1.

In (I), the dihedral angle between the C1—C6 and C9—C14 benzene rings is 111.7 (2)° while that between the O2—N3—O3 nitro plane and the plane of the C1—C6 benzene ring is 26.7 (2)°. Bond lengths in the compound are found to have normal values (Allen et al., 1987). The methoxy group is coplanar with the C9—C14 benzene ring, with a C15—O4—C10—C11 torsion angle of -3.2 (2)°.

In the crystal packing, adjacent molecules are linked through intermolecular N1–H1···O1 hydrogen bonds (Table 1), forming dimers (Fig. 2).

Experimental

The title compound was synthesized by the reaction of equimolar quantities (1.0 mmol each) of 2-methoxybenzaldehyde and 2-nitrobenzohydrazide in methanol (100 ml) for 3 h at room temperature. The solution was kept in air for a few days, forming colorless block-like crystals of the compound.

Refinement

The N-bound H atom was located in a difference Fourier map and was refined with an N–H distance restraint of 0.90 (1) Å. C-bound H atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15). Crystals were small and weakly diffracting which explains the relatively low data fraction.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C15H13N3O4 Z = 2
Mr = 299.28 F(000) = 312
Triclinic, P1 Dx = 1.338 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.491 (2) Å Cell parameters from 1428 reflections
b = 9.427 (3) Å θ = 2.8–24.9°
c = 10.977 (3) Å µ = 0.10 mm1
α = 91.748 (4)° T = 298 K
β = 106.218 (4)° Block, colorless
γ = 92.221 (4)° 0.23 × 0.23 × 0.22 mm
V = 743.1 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3140 independent reflections
Radiation source: fine-focus sealed tube 2018 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.978, Tmax = 0.979 k = −12→11
6232 measured reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.0142P] where P = (Fo2 + 2Fc2)/3
3140 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6095 (2) 0.83513 (13) 0.54829 (12) 0.0763 (4)
O2 0.1921 (2) 0.69215 (17) 0.37644 (16) 0.0874 (5)
O3 0.1059 (2) 0.54863 (19) 0.2124 (2) 0.1155 (7)
O4 0.32257 (18) 1.20069 (12) 0.01171 (11) 0.0635 (4)
N1 0.4749 (2) 0.90208 (15) 0.35161 (13) 0.0609 (4)
N2 0.3966 (2) 0.86740 (14) 0.22397 (12) 0.0526 (4)
N3 0.2239 (2) 0.60480 (19) 0.30207 (19) 0.0714 (5)
C1 0.5624 (2) 0.65719 (17) 0.38490 (14) 0.0479 (4)
C2 0.4158 (2) 0.56387 (18) 0.32220 (16) 0.0504 (4)
C3 0.4423 (3) 0.43069 (18) 0.27844 (17) 0.0620 (5)
H3 0.3408 0.3709 0.2360 0.074*
C4 0.6193 (3) 0.3869 (2) 0.29785 (19) 0.0686 (5)
H4 0.6392 0.2967 0.2690 0.082*
C5 0.7670 (3) 0.4760 (2) 0.35974 (18) 0.0663 (5)
H5 0.8875 0.4463 0.3725 0.080*
C6 0.7390 (2) 0.6095 (2) 0.40340 (16) 0.0590 (5)
H6 0.8411 0.6684 0.4461 0.071*
C7 0.5456 (3) 0.80422 (18) 0.43443 (16) 0.0559 (5)
C8 0.3456 (2) 0.97399 (17) 0.15700 (15) 0.0496 (4)
H8 0.3691 1.0645 0.1958 0.060*
C9 0.2516 (2) 0.95924 (17) 0.02188 (15) 0.0473 (4)
C10 0.2377 (2) 1.07927 (19) −0.05146 (15) 0.0507 (4)
C11 0.1419 (3) 1.0699 (2) −0.17899 (17) 0.0675 (5)
H11 0.1328 1.1499 −0.2275 0.081*
C12 0.0606 (3) 0.9428 (3) −0.2335 (2) 0.0777 (6)
H12 −0.0041 0.9371 −0.3193 0.093*
C13 0.0727 (3) 0.8231 (2) −0.1637 (2) 0.0735 (6)
H13 0.0170 0.7370 −0.2020 0.088*
C14 0.1680 (3) 0.8317 (2) −0.03657 (18) 0.0618 (5)
H14 0.1763 0.7508 0.0107 0.074*
C15 0.3219 (4) 1.3252 (2) −0.0573 (2) 0.0835 (7)
H15A 0.3822 1.3086 −0.1227 0.125*
H15B 0.3874 1.4019 −0.0009 0.125*
H15C 0.1958 1.3497 −0.0953 0.125*
H1 0.462 (3) 0.9897 (13) 0.3841 (18) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1187 (12) 0.0584 (8) 0.0431 (8) 0.0124 (8) 0.0071 (7) 0.0026 (6)
O2 0.0841 (11) 0.0920 (11) 0.1047 (12) 0.0271 (9) 0.0521 (9) 0.0251 (10)
O3 0.0594 (10) 0.1026 (13) 0.1606 (18) −0.0046 (9) −0.0059 (11) −0.0071 (12)
O4 0.0816 (9) 0.0535 (7) 0.0498 (7) −0.0058 (6) 0.0095 (6) 0.0122 (6)
N1 0.0937 (12) 0.0441 (8) 0.0412 (8) 0.0091 (8) 0.0119 (8) 0.0035 (6)
N2 0.0670 (9) 0.0485 (8) 0.0426 (8) 0.0070 (7) 0.0149 (7) 0.0036 (6)
N3 0.0590 (11) 0.0633 (11) 0.0941 (14) 0.0018 (9) 0.0236 (10) 0.0200 (10)
C1 0.0598 (11) 0.0455 (9) 0.0382 (9) 0.0046 (8) 0.0122 (7) 0.0101 (7)
C2 0.0515 (10) 0.0488 (10) 0.0536 (10) 0.0057 (8) 0.0180 (8) 0.0126 (8)
C3 0.0713 (13) 0.0459 (10) 0.0673 (12) −0.0034 (9) 0.0175 (10) 0.0045 (9)
C4 0.0838 (15) 0.0526 (11) 0.0747 (13) 0.0144 (10) 0.0292 (11) 0.0060 (10)
C5 0.0629 (12) 0.0700 (13) 0.0697 (13) 0.0201 (10) 0.0213 (10) 0.0160 (10)
C6 0.0552 (11) 0.0629 (12) 0.0541 (11) 0.0023 (9) 0.0067 (8) 0.0105 (9)
C7 0.0734 (12) 0.0496 (10) 0.0427 (10) 0.0033 (9) 0.0127 (8) 0.0069 (8)
C8 0.0599 (10) 0.0437 (9) 0.0454 (10) 0.0036 (8) 0.0148 (8) 0.0032 (8)
C9 0.0486 (9) 0.0490 (10) 0.0459 (9) 0.0047 (7) 0.0153 (7) 0.0012 (8)
C10 0.0483 (10) 0.0598 (11) 0.0436 (9) 0.0040 (8) 0.0118 (7) 0.0036 (8)
C11 0.0670 (12) 0.0854 (15) 0.0466 (11) 0.0043 (11) 0.0096 (9) 0.0082 (10)
C12 0.0665 (13) 0.1108 (18) 0.0486 (11) 0.0036 (12) 0.0059 (9) −0.0106 (12)
C13 0.0657 (13) 0.0799 (15) 0.0706 (14) −0.0082 (11) 0.0166 (10) −0.0269 (12)
C14 0.0641 (12) 0.0577 (11) 0.0635 (12) 0.0007 (9) 0.0191 (9) −0.0070 (9)
C15 0.1165 (18) 0.0631 (13) 0.0682 (14) −0.0017 (12) 0.0200 (12) 0.0229 (11)

Geometric parameters (Å, °)

O1—C7 1.2283 (19) C5—C6 1.377 (3)
O2—N3 1.218 (2) C5—H5 0.9300
O3—N3 1.215 (2) C6—H6 0.9300
O4—C10 1.358 (2) C8—C9 1.453 (2)
O4—C15 1.416 (2) C8—H8 0.9300
N1—C7 1.333 (2) C9—C14 1.385 (2)
N1—N2 1.3828 (19) C9—C10 1.399 (2)
N1—H1 0.910 (9) C10—C11 1.382 (2)
N2—C8 1.270 (2) C11—C12 1.364 (3)
N3—C2 1.461 (2) C11—H11 0.9300
C1—C6 1.376 (2) C12—C13 1.375 (3)
C1—C2 1.386 (2) C12—H12 0.9300
C1—C7 1.496 (2) C13—C14 1.377 (3)
C2—C3 1.372 (2) C13—H13 0.9300
C3—C4 1.365 (3) C14—H14 0.9300
C3—H3 0.9300 C15—H15A 0.9600
C4—C5 1.366 (3) C15—H15B 0.9600
C4—H4 0.9300 C15—H15C 0.9600
C10—O4—C15 118.70 (14) N1—C7—C1 118.62 (15)
C7—N1—N2 121.79 (14) N2—C8—C9 122.23 (15)
C7—N1—H1 117.1 (13) N2—C8—H8 118.9
N2—N1—H1 120.3 (13) C9—C8—H8 118.9
C8—N2—N1 113.81 (14) C14—C9—C10 118.43 (16)
O3—N3—O2 124.2 (2) C14—C9—C8 122.47 (16)
O3—N3—C2 117.72 (19) C10—C9—C8 119.04 (15)
O2—N3—C2 118.09 (18) O4—C10—C11 124.23 (17)
C6—C1—C2 116.74 (16) O4—C10—C9 115.40 (14)
C6—C1—C7 117.41 (16) C11—C10—C9 120.37 (17)
C2—C1—C7 125.85 (16) C12—C11—C10 119.7 (2)
C3—C2—C1 122.53 (17) C12—C11—H11 120.2
C3—C2—N3 117.31 (17) C10—C11—H11 120.2
C1—C2—N3 120.16 (16) C11—C12—C13 121.14 (19)
C4—C3—C2 119.23 (18) C11—C12—H12 119.4
C4—C3—H3 120.4 C13—C12—H12 119.4
C2—C3—H3 120.4 C12—C13—C14 119.44 (19)
C3—C4—C5 119.76 (18) C12—C13—H13 120.3
C3—C4—H4 120.1 C14—C13—H13 120.3
C5—C4—H4 120.1 C13—C14—C9 120.9 (2)
C4—C5—C6 120.57 (19) C13—C14—H14 119.5
C4—C5—H5 119.7 C9—C14—H14 119.5
C6—C5—H5 119.7 O4—C15—H15A 109.5
C1—C6—C5 121.16 (18) O4—C15—H15B 109.5
C1—C6—H6 119.4 H15A—C15—H15B 109.5
C5—C6—H6 119.4 O4—C15—H15C 109.5
O1—C7—N1 121.37 (16) H15A—C15—H15C 109.5
O1—C7—C1 119.77 (15) H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.91 (1) 1.94 (1) 2.844 (2) 170 (2)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2574).

References

  1. Ali, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873–o1874.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem 4, 31–39. [DOI] [PubMed]
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Galić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct 559, 187–194.
  7. Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem 4, 266–273. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005753/sj2574sup1.cif

e-65-0o577-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005753/sj2574Isup2.hkl

e-65-0o577-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES