Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 6;65(Pt 3):o476. doi: 10.1107/S1600536809003845

4-Chloro-2-methyl-N-phenyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, K S Babitha a, Hartmut Fuess b
PMCID: PMC2968641  PMID: 21582145

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C13H12ClNO2S, with similar conformations. The orientations of the ortho-methyl groups in the sulfonyl benzene rings are in the direction of the N—H bonds of the sulfonamide groups. In the crystal, the mol­ecules are each linked into centrosymmetric dimers through N—H⋯O hydrogen bonds and packed into a layered structure diagonally in the bc plane.

Related literature

For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008a,b , 2009); Perlovich et al. (2006)graphic file with name e-65-0o476-scheme1.jpg

Experimental

Crystal data

  • C13H12ClNO2S

  • M r = 281.75

  • Triclinic, Inline graphic

  • a = 8.609 (1) Å

  • b = 11.143 (1) Å

  • c = 14.726 (2) Å

  • α = 98.618 (7)°

  • β = 90.951 (8)°

  • γ = 105.79 (1)°

  • V = 1341.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.93 mm−1

  • T = 299 (2) K

  • 0.33 × 0.23 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.350, T max = 0.729

  • 7620 measured reflections

  • 4784 independent reflections

  • 2980 reflections with I > 2σ(I)

  • R int = 0.045

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.176

  • S = 1.03

  • 4784 reflections

  • 333 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003845/fj2192sup1.cif

e-65-0o476-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003845/fj2192Isup2.hkl

e-65-0o476-Isup2.hkl (234.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.91 (5) 2.02 (5) 2.922 (4) 175 (4)
N2—H2N⋯O3ii 0.88 (4) 2.03 (5) 2.906 (4) 173 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides, the structure of N-(phenyl)-2-methyl-4-chlorobenzenesulfonamide (NP2M4CBSA) has been determined (Gowda et al. 2008a,b, 2009). The asymmetric unit of NP2M4CBSA contains 2 molecules. The orientations of the ortho- methyl groups in the sulfonyl benzene rings are in the direction of the N—H bonds of the sulfonamido groups (Fig. 1). The opposite signs of the C—S—N—C torsion angles in the two independent molecules, -61.9 (4)° (molecule 1) and 69.7 (4)° (molecule 2), indicates that they have opposite chirality, although the choice of the chirality of the second molecule relative to the first may be arbitary. The two benzene rings in NP2M4CBSA are tilted relative to each other by 86.6 (2)° in the molecule 1 and 83.0 (2)° in molecule 2, compared with the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) for N-(phenyl)-2,4-dimethylbenzenesulfonamide (NP24DMBSA) (Gowda et al., 2009). The other bond parameters in NP2M4CBSA are similar to those observed for N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008a), NP24DMBSA and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008b). The crystal packing of molecules in NP2M4CBSA via intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of m-chlorotoluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(phenyl)-2-methyl-4-chlorobenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a diffrerence map and their positions refined, with N—H = 0.88 (4)–0.91 (5) Å. The carbon-bound H atoms were positioned with idealized geometry and refined using a riding model, with C—H distances 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl group Uiso(H) = 1.5 Ueq.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H12ClNO2S Z = 4
Mr = 281.75 F(000) = 584
Triclinic, P1 Dx = 1.395 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 8.609 (1) Å Cell parameters from 25 reflections
b = 11.143 (1) Å θ = 5.6–21.8°
c = 14.726 (2) Å µ = 3.93 mm1
α = 98.618 (7)° T = 299 K
β = 90.951 (8)° Prism, colourless
γ = 105.79 (1)° 0.33 × 0.23 × 0.08 mm
V = 1341.6 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2980 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
graphite θmax = 67.0°, θmin = 3.0°
ω/2θ scans h = −10→10
Absorption correction: ψ scan (North et al., 1968) k = −13→13
Tmin = 0.350, Tmax = 0.729 l = −17→7
7620 measured reflections 3 standard reflections every 120 min
4784 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.1233P] where P = (Fo2 + 2Fc2)/3
4784 reflections (Δ/σ)max = 0.005
333 parameters Δρmax = 0.41 e Å3
12 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.4618 (4) 0.43860 (18) 0.24063 (15) 0.1670 (10)
S1 0.46343 (11) 0.96896 (11) 0.15504 (7) 0.0586 (3)
O1 0.4383 (4) 1.0364 (3) 0.2403 (2) 0.0802 (9)
O2 0.3532 (3) 0.9562 (3) 0.07717 (19) 0.0722 (8)
N1 0.6377 (4) 1.0345 (3) 0.1199 (2) 0.0611 (9)
H1N 0.647 (5) 1.039 (4) 0.059 (3) 0.073*
C1 0.4664 (4) 0.8182 (4) 0.1749 (3) 0.0565 (10)
C2 0.4758 (8) 0.7240 (5) 0.1044 (3) 0.0907 (16)
C3 0.4778 (10) 0.6088 (5) 0.1273 (4) 0.120 (2)
H3 0.4876 0.5444 0.0816 0.144*
C4 0.4653 (7) 0.5877 (5) 0.2179 (4) 0.0910 (16)
C5 0.4560 (6) 0.6791 (5) 0.2862 (3) 0.0768 (13)
H5 0.4494 0.6642 0.3467 0.092*
C6 0.4563 (5) 0.7946 (5) 0.2653 (3) 0.0663 (11)
H6 0.4495 0.8586 0.3122 0.080*
C7 0.7894 (4) 1.0635 (3) 0.1698 (3) 0.0522 (9)
C8 0.9247 (5) 1.0883 (4) 0.1201 (3) 0.0701 (12)
H8 0.9151 1.0848 0.0567 0.084*
C9 1.0763 (6) 1.1187 (5) 0.1656 (4) 0.0865 (15)
H9 1.1685 1.1358 0.1323 0.104*
C10 1.0914 (6) 1.1239 (5) 0.2591 (4) 0.0834 (15)
H10 1.1933 1.1440 0.2891 0.100*
C11 0.9570 (6) 1.0995 (4) 0.3074 (3) 0.0718 (12)
H11 0.9671 1.1026 0.3707 0.086*
C12 0.8054 (5) 1.0701 (4) 0.2639 (3) 0.0653 (11)
H12 0.7141 1.0547 0.2980 0.078*
C13 0.4894 (9) 0.7419 (4) 0.0007 (3) 0.102 (2)
H13A 0.5834 0.8097 −0.0050 0.123*
H13B 0.3947 0.7616 −0.0205 0.123*
H13C 0.4985 0.6653 −0.0357 0.123*
Cl2 0.1160 (4) 0.3570 (3) 0.99174 (14) 0.1919 (12)
S2 −0.06931 (11) 0.32374 (9) 0.57752 (8) 0.0560 (3)
O3 −0.1468 (3) 0.4185 (3) 0.5635 (2) 0.0703 (8)
O4 −0.1553 (3) 0.1953 (3) 0.5486 (2) 0.0727 (8)
N2 0.0946 (4) 0.3586 (3) 0.5248 (2) 0.0581 (9)
H2N 0.114 (5) 0.431 (4) 0.503 (3) 0.070*
C14 −0.0126 (5) 0.3404 (4) 0.6948 (3) 0.0569 (10)
C15 0.0592 (7) 0.4573 (4) 0.7478 (4) 0.0803 (13)
C16 0.0983 (8) 0.4591 (6) 0.8395 (4) 0.115 (2)
H16 0.1457 0.5359 0.8770 0.138*
C17 0.0679 (8) 0.3489 (7) 0.8762 (4) 0.110 (2)
C18 −0.0041 (7) 0.2348 (6) 0.8243 (4) 0.0906 (16)
H18 −0.0267 0.1612 0.8502 0.109*
C19 −0.0424 (5) 0.2309 (4) 0.7334 (3) 0.0679 (11)
H19 −0.0894 0.1533 0.6967 0.081*
C20 0.2114 (4) 0.2902 (3) 0.5100 (2) 0.0477 (8)
C21 0.1911 (5) 0.1719 (4) 0.5338 (3) 0.0610 (10)
H21 0.0998 0.1346 0.5632 0.073*
C22 0.3085 (6) 0.1093 (4) 0.5135 (3) 0.0692 (12)
H22 0.2954 0.0292 0.5286 0.083*
C23 0.4443 (6) 0.1657 (5) 0.4708 (3) 0.0742 (13)
H23 0.5231 0.1238 0.4574 0.089*
C24 0.4630 (5) 0.2827 (5) 0.4484 (3) 0.0723 (12)
H24 0.5551 0.3209 0.4201 0.087*
C25 0.3464 (4) 0.3451 (4) 0.4674 (3) 0.0577 (10)
H25 0.3596 0.4247 0.4513 0.069*
C26 0.0961 (9) 0.5821 (4) 0.7100 (4) 0.111 (2)
H26A 0.1530 0.5749 0.6548 0.133*
H26B 0.1619 0.6486 0.7550 0.133*
H26C −0.0033 0.6010 0.6965 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.280 (3) 0.1079 (13) 0.1210 (15) 0.0456 (15) 0.0296 (16) 0.0575 (11)
S1 0.0529 (5) 0.0868 (7) 0.0417 (5) 0.0282 (5) 0.0004 (4) 0.0114 (5)
O1 0.092 (2) 0.114 (3) 0.0494 (17) 0.0576 (19) 0.0072 (15) 0.0056 (16)
O2 0.0544 (16) 0.121 (3) 0.0516 (17) 0.0361 (16) −0.0077 (13) 0.0244 (16)
N1 0.0573 (19) 0.085 (2) 0.0421 (18) 0.0178 (17) −0.0045 (15) 0.0176 (17)
C1 0.052 (2) 0.076 (3) 0.039 (2) 0.0125 (18) 0.0021 (16) 0.0133 (18)
C2 0.146 (5) 0.079 (3) 0.047 (3) 0.030 (3) 0.012 (3) 0.017 (2)
C3 0.230 (8) 0.074 (3) 0.057 (3) 0.036 (4) 0.021 (4) 0.018 (3)
C4 0.123 (4) 0.081 (3) 0.066 (3) 0.017 (3) 0.006 (3) 0.025 (3)
C5 0.082 (3) 0.098 (4) 0.053 (3) 0.018 (3) 0.012 (2) 0.030 (3)
C6 0.059 (2) 0.091 (3) 0.048 (2) 0.015 (2) 0.0018 (19) 0.018 (2)
C7 0.057 (2) 0.051 (2) 0.049 (2) 0.0156 (17) −0.0071 (17) 0.0100 (16)
C8 0.062 (3) 0.088 (3) 0.062 (3) 0.026 (2) 0.003 (2) 0.009 (2)
C9 0.058 (3) 0.112 (4) 0.089 (4) 0.024 (3) 0.002 (3) 0.012 (3)
C10 0.070 (3) 0.080 (3) 0.096 (4) 0.025 (2) −0.029 (3) −0.001 (3)
C11 0.081 (3) 0.063 (3) 0.065 (3) 0.012 (2) −0.025 (2) 0.010 (2)
C12 0.065 (3) 0.074 (3) 0.050 (2) 0.007 (2) −0.0075 (19) 0.015 (2)
C13 0.226 (7) 0.068 (3) 0.026 (2) 0.061 (4) 0.018 (3) 0.0116 (19)
Cl2 0.244 (3) 0.239 (3) 0.0830 (12) 0.035 (2) −0.0157 (15) 0.0602 (15)
S2 0.0490 (5) 0.0529 (5) 0.0731 (7) 0.0173 (4) 0.0041 (4) 0.0259 (5)
O3 0.0608 (16) 0.0743 (19) 0.095 (2) 0.0364 (14) 0.0125 (15) 0.0398 (16)
O4 0.0641 (17) 0.0545 (17) 0.097 (2) 0.0071 (13) −0.0088 (16) 0.0213 (15)
N2 0.0595 (19) 0.0517 (19) 0.078 (2) 0.0282 (16) 0.0181 (17) 0.0319 (17)
C14 0.057 (2) 0.055 (2) 0.066 (3) 0.0187 (18) 0.0156 (19) 0.0258 (19)
C15 0.103 (4) 0.063 (3) 0.073 (3) 0.019 (3) 0.007 (3) 0.015 (2)
C16 0.152 (6) 0.096 (4) 0.081 (4) 0.010 (4) 0.001 (4) 0.009 (3)
C17 0.131 (5) 0.131 (6) 0.071 (4) 0.027 (4) 0.003 (4) 0.041 (4)
C18 0.093 (4) 0.103 (4) 0.089 (4) 0.029 (3) 0.011 (3) 0.053 (3)
C19 0.070 (3) 0.063 (3) 0.079 (3) 0.021 (2) 0.007 (2) 0.032 (2)
C20 0.053 (2) 0.0466 (19) 0.046 (2) 0.0183 (16) −0.0057 (16) 0.0085 (15)
C21 0.062 (2) 0.057 (2) 0.070 (3) 0.0214 (19) 0.001 (2) 0.019 (2)
C22 0.081 (3) 0.057 (2) 0.076 (3) 0.032 (2) −0.010 (2) 0.008 (2)
C23 0.076 (3) 0.089 (3) 0.070 (3) 0.051 (3) −0.004 (2) 0.001 (2)
C24 0.063 (3) 0.087 (3) 0.078 (3) 0.032 (2) 0.015 (2) 0.024 (3)
C25 0.056 (2) 0.061 (2) 0.058 (2) 0.0166 (18) −0.0001 (18) 0.0164 (19)
C26 0.171 (6) 0.045 (3) 0.104 (4) 0.007 (3) −0.003 (4) 0.010 (3)

Geometric parameters (Å, °)

Cl1—C4 1.735 (6) Cl2—C17 1.727 (6)
S1—O1 1.415 (3) S2—O4 1.417 (3)
S1—O2 1.441 (3) S2—O3 1.431 (3)
S1—N1 1.611 (4) S2—N2 1.604 (3)
S1—C1 1.754 (4) S2—C14 1.756 (4)
N1—C7 1.419 (5) N2—C20 1.419 (4)
N1—H1N 0.91 (5) N2—H2N 0.88 (4)
C1—C2 1.382 (6) C14—C19 1.385 (5)
C1—C6 1.395 (5) C14—C15 1.389 (6)
C2—C3 1.380 (7) C15—C16 1.383 (7)
C2—C13 1.571 (6) C15—C26 1.529 (7)
C3—C4 1.390 (7) C16—C17 1.378 (8)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.340 (7) C17—C18 1.360 (8)
C5—C6 1.367 (6) C18—C19 1.366 (7)
C5—H5 0.9300 C18—H18 0.9300
C6—H6 0.9300 C19—H19 0.9300
C7—C8 1.372 (5) C20—C25 1.367 (5)
C7—C12 1.380 (5) C20—C21 1.381 (5)
C8—C9 1.388 (6) C21—C22 1.389 (5)
C8—H8 0.9300 C21—H21 0.9300
C9—C10 1.372 (7) C22—C23 1.379 (6)
C9—H9 0.9300 C22—H22 0.9300
C10—C11 1.353 (7) C23—C24 1.361 (6)
C10—H10 0.9300 C23—H23 0.9300
C11—C12 1.377 (6) C24—C25 1.378 (5)
C11—H11 0.9300 C24—H24 0.9300
C12—H12 0.9300 C25—H25 0.9300
C13—H13A 0.9600 C26—H26A 0.9600
C13—H13B 0.9600 C26—H26B 0.9600
C13—H13C 0.9600 C26—H26C 0.9600
O1—S1—O2 118.88 (18) O4—S2—O3 118.30 (18)
O1—S1—N1 110.6 (2) O4—S2—N2 110.14 (19)
O2—S1—N1 103.80 (17) O3—S2—N2 104.50 (17)
O1—S1—C1 106.88 (19) O4—S2—C14 107.02 (18)
O2—S1—C1 109.17 (19) O3—S2—C14 109.55 (19)
N1—S1—C1 107.02 (18) N2—S2—C14 106.81 (18)
C7—N1—S1 126.6 (3) C20—N2—S2 128.7 (3)
C7—N1—H1N 113 (3) C20—N2—H2N 116 (3)
S1—N1—H1N 119 (3) S2—N2—H2N 115 (3)
C2—C1—C6 120.1 (4) C19—C14—C15 120.7 (4)
C2—C1—S1 122.2 (3) C19—C14—S2 117.1 (3)
C6—C1—S1 117.7 (3) C15—C14—S2 122.3 (3)
C3—C2—C1 117.7 (4) C16—C15—C14 117.3 (5)
C3—C2—C13 118.5 (4) C16—C15—C26 119.1 (5)
C1—C2—C13 123.8 (4) C14—C15—C26 123.6 (5)
C2—C3—C4 120.8 (5) C17—C16—C15 121.0 (6)
C2—C3—H3 119.6 C17—C16—H16 119.5
C4—C3—H3 119.6 C15—C16—H16 119.5
C5—C4—C3 121.4 (5) C18—C17—C16 121.4 (6)
C5—C4—Cl1 120.5 (4) C18—C17—Cl2 119.5 (5)
C3—C4—Cl1 118.0 (4) C16—C17—Cl2 119.1 (6)
C4—C5—C6 118.7 (4) C17—C18—C19 118.4 (5)
C4—C5—H5 120.6 C17—C18—H18 120.8
C6—C5—H5 120.6 C19—C18—H18 120.8
C5—C6—C1 121.2 (4) C18—C19—C14 121.1 (5)
C5—C6—H6 119.4 C18—C19—H19 119.4
C1—C6—H6 119.4 C14—C19—H19 119.4
C8—C7—C12 119.8 (4) C25—C20—C21 120.2 (3)
C8—C7—N1 116.9 (4) C25—C20—N2 116.9 (3)
C12—C7—N1 123.3 (4) C21—C20—N2 123.0 (3)
C7—C8—C9 119.3 (4) C20—C21—C22 119.3 (4)
C7—C8—H8 120.4 C20—C21—H21 120.4
C9—C8—H8 120.4 C22—C21—H21 120.4
C10—C9—C8 120.7 (5) C23—C22—C21 120.1 (4)
C10—C9—H9 119.7 C23—C22—H22 120.0
C8—C9—H9 119.7 C21—C22—H22 120.0
C11—C10—C9 119.5 (4) C24—C23—C22 119.9 (4)
C11—C10—H10 120.2 C24—C23—H23 120.1
C9—C10—H10 120.2 C22—C23—H23 120.1
C10—C11—C12 120.9 (4) C23—C24—C25 120.5 (4)
C10—C11—H11 119.6 C23—C24—H24 119.7
C12—C11—H11 119.6 C25—C24—H24 119.7
C11—C12—C7 119.9 (4) C20—C25—C24 120.1 (4)
C11—C12—H12 120.1 C20—C25—H25 119.9
C7—C12—H12 120.1 C24—C25—H25 119.9
C2—C13—H13A 109.5 C15—C26—H26A 109.5
C2—C13—H13B 109.5 C15—C26—H26B 109.5
H13A—C13—H13B 109.5 H26A—C26—H26B 109.5
C2—C13—H13C 109.5 C15—C26—H26C 109.5
H13A—C13—H13C 109.5 H26A—C26—H26C 109.5
H13B—C13—H13C 109.5 H26B—C26—H26C 109.5
O1—S1—N1—C7 54.0 (4) O4—S2—N2—C20 −46.3 (4)
O2—S1—N1—C7 −177.4 (3) O3—S2—N2—C20 −174.3 (3)
C1—S1—N1—C7 −62.0 (4) C14—S2—N2—C20 69.6 (4)
O1—S1—C1—C2 174.7 (4) O4—S2—C14—C19 6.9 (4)
O2—S1—C1—C2 44.9 (5) O3—S2—C14—C19 136.3 (3)
N1—S1—C1—C2 −66.8 (4) N2—S2—C14—C19 −111.1 (3)
O1—S1—C1—C6 −4.2 (4) O4—S2—C14—C15 −173.1 (4)
O2—S1—C1—C6 −134.0 (3) O3—S2—C14—C15 −43.7 (4)
N1—S1—C1—C6 114.2 (3) N2—S2—C14—C15 68.9 (4)
C6—C1—C2—C3 −1.2 (8) C19—C14—C15—C16 −0.3 (7)
S1—C1—C2—C3 179.9 (5) S2—C14—C15—C16 179.7 (4)
C6—C1—C2—C13 −179.3 (5) C19—C14—C15—C26 179.9 (5)
S1—C1—C2—C13 1.7 (8) S2—C14—C15—C26 −0.1 (7)
C1—C2—C3—C4 2.1 (10) C14—C15—C16—C17 0.5 (9)
C13—C2—C3—C4 −179.7 (6) C26—C15—C16—C17 −179.6 (6)
C2—C3—C4—C5 −2.0 (11) C15—C16—C17—C18 −1.3 (11)
C2—C3—C4—Cl1 177.8 (6) C15—C16—C17—Cl2 −178.9 (5)
C3—C4—C5—C6 1.0 (9) C16—C17—C18—C19 1.8 (10)
Cl1—C4—C5—C6 −178.9 (4) Cl2—C17—C18—C19 179.4 (4)
C4—C5—C6—C1 −0.1 (7) C17—C18—C19—C14 −1.5 (8)
C2—C1—C6—C5 0.3 (7) C15—C14—C19—C18 0.8 (7)
S1—C1—C6—C5 179.2 (3) S2—C14—C19—C18 −179.2 (4)
S1—N1—C7—C8 163.5 (3) S2—N2—C20—C25 −176.1 (3)
S1—N1—C7—C12 −17.8 (6) S2—N2—C20—C21 5.9 (6)
C12—C7—C8—C9 0.5 (6) C25—C20—C21—C22 −0.5 (6)
N1—C7—C8—C9 179.2 (4) N2—C20—C21—C22 177.4 (4)
C7—C8—C9—C10 0.1 (7) C20—C21—C22—C23 0.7 (6)
C8—C9—C10—C11 −0.2 (8) C21—C22—C23—C24 −0.2 (7)
C9—C10—C11—C12 −0.3 (7) C22—C23—C24—C25 −0.5 (7)
C10—C11—C12—C7 0.9 (7) C21—C20—C25—C24 −0.2 (6)
C8—C7—C12—C11 −1.0 (6) N2—C20—C25—C24 −178.2 (4)
N1—C7—C12—C11 −179.7 (4) C23—C24—C25—C20 0.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.91 (5) 2.02 (5) 2.922 (4) 175 (4)
N2—H2N···O3ii 0.88 (4) 2.03 (5) 2.906 (4) 173 (4)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2192).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1692. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65 Submitted. [DOI] [PMC free article] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003845/fj2192sup1.cif

e-65-0o476-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003845/fj2192Isup2.hkl

e-65-0o476-Isup2.hkl (234.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES