Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):o595–o596. doi: 10.1107/S1600536809006035

3,3-Ethyl­enedithio-3,3a,4,5,10,10b-hexa­hydro-2H-furo[2,3-a]carbazole

Nesimi Uludağ a, Aslı Öztürk b, Tuncer Hökelek b, Ümit Işık Erdoğan c,*
PMCID: PMC2968651  PMID: 21582250

Abstract

The title compound, C16H17NOS2, consists of a carbazole skeleton with tetra­hydro­furan and dithiol­ane rings. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.57 (15)°. The cyclo­hexenone and tetra­hydro­furan rings have envelope conformations, while the dithiol­ane ring adopts a twist conformation. In the crystal structure, pairs of weak inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers with R 2 2(16) ring motifs. Weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For general background, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999,2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)graphic file with name e-65-0o595-scheme1.jpg

Experimental

Crystal data

  • C16H17NOS2

  • M r = 303.43

  • Orthorhombic, Inline graphic

  • a = 21.7617 (5) Å

  • b = 8.4992 (2) Å

  • c = 15.2115 (3) Å

  • V = 2813.47 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.913, T max = 0.944

  • 8196 measured reflections

  • 2289 independent reflections

  • 1105 reflections with I > 2σ(I)

  • R int = 0.149

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 0.98

  • 2289 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006035/xu2478sup1.cif

e-65-0o595-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006035/xu2478Isup2.hkl

e-65-0o595-Isup2.hkl (67.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯S2i 0.81 (4) 2.71 (4) 3.487 (4) 161 (4)
C3A—H3ACg2ii 0.98 2.85 3.725 (4) 149
C4—H4BCg1iii 0.97 2.79 3.556 (5) 136
C5—H5ACg1ii 0.97 2.96 3.714 (5) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are centroids of the C5b/C6–C9/C9a and C5a/C5b/C9a/N10/C10a rings, respectively.

Acknowledgments

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

supplementary crystallographic information

Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. It consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. The bonds N10—C9a [1.378 (5) Å] and N10—C10a [1.371 (5) Å] generally agree with those in compounds (II)-(X). In all structures atom N10 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C5b/C6—C9/C9a) and B (C5a/C5b/C9a/N10/C10a) are planar. They are also nearly coplanar with a dihedral angle of A/B = 1.57 (15)°. Rings C (C3a/C4/C5/C5a/C10a/C10b), D (O1/C2/C3/C3a/C10b) and E (S1/S2/C3/C11/C12) are not planar. Rings C and D have envelope conformations with atoms C4 and C3 displaced by -0.677 (4) Å (for ring C) and 0.568 (4) Å (for ring D) from the planes of the other ring atoms, respectively. Ring E adopts twisted conformation. Rings C and D have pseudo mirror planes running through atoms C10a and C4 (for ring C) and running through atom C3 and midpoint of O1—C10b bond (for ring D), as can be deduced from the torsion angles (Table 1).

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2) by forming the R22(16) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The weak C—H···π interactions (Table 1) may further stabilize the structure.

Experimental

For the preparation of the title compound, (I), sodium borohydride (5.00 g, 132.00 mmol) was added to a solution of ethyl 2-(1-oxo-2,3,4,9-tetrahydro-1H -carbazol-2yl)-1,3-dithiolane-2-carboxylate (5.00 g, 13.83 mmol) in THF (50 ml), and stirred at room temperature for 3 h. Then, the reaction mixture was poured into HCl (15%, 100 ml). The crude product was filtered and recrystallized from acetone (yield; 3.2 g, 77%, m.p. 468 K).

Refinement

H10 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.81 (3) Å and Uiso(H) = 0.043 (15) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H17NOS2 F(000) = 1280
Mr = 303.43 Dx = 1.433 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 25 reflections
a = 21.7617 (5) Å θ = 9.3–16.7°
b = 8.4992 (2) Å µ = 0.37 mm1
c = 15.2115 (3) Å T = 294 K
V = 2813.47 (11) Å3 Prism, colorless
Z = 8 0.35 × 0.20 × 0.15 mm

Data collection

Enraf–Nonius TurboCAD-4 diffractometer 1105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.149
graphite θmax = 24.3°, θmin = 2.6°
Non–profiled ω scans h = −25→25
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.913, Tmax = 0.944 l = −17→0
8196 measured reflections 3 standard reflections every 120 min
2289 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.8766P] where P = (Fo2 + 2Fc2)/3
2289 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.32178 (5) 0.10773 (14) 0.23756 (8) 0.0538 (4)
S2 0.33505 (5) −0.00621 (14) 0.05706 (9) 0.0538 (3)
O1 0.48005 (12) 0.0372 (3) 0.1141 (2) 0.0597 (9)
C2 0.43301 (17) −0.0004 (5) 0.1754 (3) 0.0499 (12)
H2A 0.4450 0.0310 0.2343 0.060*
H2B 0.4250 −0.1126 0.1753 0.060*
C3 0.37602 (18) 0.0902 (5) 0.1461 (3) 0.0394 (11)
C3A 0.40456 (17) 0.2447 (4) 0.1109 (3) 0.0391 (11)
H3A 0.3786 0.2865 0.0637 0.047*
C4 0.41256 (17) 0.3698 (4) 0.1817 (3) 0.0402 (11)
H4A 0.3724 0.4058 0.2008 0.048*
H4B 0.4332 0.3238 0.2320 0.048*
C5 0.44962 (17) 0.5095 (5) 0.1485 (3) 0.0423 (11)
H5A 0.4272 0.5632 0.1023 0.051*
H5B 0.4566 0.5834 0.1961 0.051*
C5A 0.50957 (18) 0.4512 (4) 0.1140 (3) 0.0375 (10)
C5B 0.56863 (19) 0.5223 (5) 0.1102 (3) 0.0402 (11)
C6 0.5923 (2) 0.6705 (5) 0.1333 (3) 0.0487 (12)
H6 0.5664 0.7483 0.1552 0.058*
C7 0.6542 (2) 0.6994 (6) 0.1233 (3) 0.0582 (14)
H7 0.6700 0.7973 0.1384 0.070*
C8 0.6930 (2) 0.5844 (7) 0.0909 (3) 0.0608 (14)
H8 0.7347 0.6070 0.0850 0.073*
C9 0.6721 (2) 0.4373 (5) 0.0671 (3) 0.0562 (13)
H9 0.6985 0.3607 0.0454 0.067*
C9A 0.60977 (19) 0.4090 (5) 0.0771 (3) 0.0426 (11)
C10A 0.51613 (17) 0.3010 (5) 0.0837 (3) 0.0365 (11)
C10B 0.46569 (17) 0.1854 (4) 0.0715 (3) 0.0401 (11)
H10B 0.4600 0.1667 0.0085 0.048*
N10 0.57621 (16) 0.2746 (5) 0.0610 (3) 0.0469 (10)
H10 0.5901 (17) 0.196 (4) 0.038 (3) 0.043 (15)*
C11 0.2649 (2) −0.0299 (5) 0.1985 (3) 0.0658 (14)
H11A 0.2507 −0.0947 0.2469 0.079*
H11B 0.2299 0.0269 0.1750 0.079*
C12 0.2921 (2) −0.1318 (5) 0.1286 (3) 0.0646 (14)
H12A 0.2599 −0.1851 0.0961 0.078*
H12B 0.3188 −0.2106 0.1545 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0516 (7) 0.0527 (7) 0.0570 (8) −0.0052 (6) 0.0097 (7) −0.0042 (7)
S2 0.0541 (7) 0.0516 (7) 0.0558 (7) −0.0125 (7) −0.0012 (6) −0.0103 (7)
O1 0.0462 (19) 0.040 (2) 0.093 (3) 0.0094 (14) 0.0183 (18) 0.0122 (18)
C2 0.042 (2) 0.042 (2) 0.065 (3) 0.001 (2) 0.001 (2) 0.008 (3)
C3 0.039 (3) 0.036 (2) 0.042 (3) −0.003 (2) −0.001 (2) −0.001 (2)
C3A 0.038 (2) 0.035 (2) 0.045 (3) 0.0018 (19) −0.002 (2) 0.000 (2)
C4 0.034 (2) 0.041 (3) 0.047 (3) 0.000 (2) 0.004 (2) −0.007 (2)
C5 0.048 (3) 0.036 (2) 0.043 (3) 0.001 (2) −0.001 (2) −0.004 (2)
C5A 0.040 (3) 0.040 (3) 0.033 (3) 0.000 (2) 0.002 (2) −0.001 (2)
C5B 0.050 (3) 0.042 (3) 0.029 (2) −0.003 (2) −0.001 (2) 0.001 (2)
C6 0.059 (3) 0.049 (3) 0.038 (3) −0.005 (2) 0.002 (2) 0.002 (2)
C7 0.067 (3) 0.061 (3) 0.046 (3) −0.025 (3) −0.002 (3) 0.006 (3)
C8 0.047 (3) 0.082 (4) 0.054 (3) −0.017 (3) 0.000 (2) 0.009 (3)
C9 0.049 (3) 0.059 (3) 0.061 (3) −0.003 (3) 0.007 (3) 0.005 (3)
C9A 0.044 (3) 0.046 (3) 0.038 (3) −0.007 (2) −0.001 (2) 0.003 (2)
C10A 0.034 (3) 0.040 (3) 0.036 (3) 0.002 (2) −0.002 (2) 0.002 (2)
C10B 0.042 (3) 0.034 (2) 0.045 (3) −0.004 (2) 0.004 (2) 0.000 (2)
N10 0.042 (2) 0.040 (2) 0.059 (3) 0.004 (2) 0.011 (2) −0.006 (2)
C11 0.051 (3) 0.066 (4) 0.080 (4) −0.017 (3) 0.005 (3) 0.002 (3)
C12 0.070 (3) 0.048 (3) 0.076 (4) −0.020 (3) 0.004 (3) −0.007 (3)

Geometric parameters (Å, °)

S1—C3 1.830 (4) C5B—C6 1.405 (5)
S1—C11 1.803 (4) C6—H6 0.9300
S2—C3 1.817 (4) C7—C6 1.377 (5)
S2—C12 1.788 (4) C7—C8 1.383 (6)
O1—C2 1.421 (5) C7—H7 0.9300
O1—C10B 1.450 (4) C8—H8 0.9300
C2—H2A 0.9700 C9—C8 1.379 (6)
C2—H2B 0.9700 C9—H9 0.9300
C3—C2 1.526 (5) C9A—C9 1.385 (5)
C3A—C3 1.548 (5) C9A—C5B 1.408 (5)
C3A—C4 1.523 (5) C10A—C10B 1.485 (5)
C3A—C10B 1.544 (5) C10B—H10B 0.9800
C3A—H3A 0.9800 N10—C10A 1.371 (5)
C4—C5 1.522 (5) N10—C9A 1.378 (5)
C4—H4A 0.9700 N10—H10 0.81 (3)
C4—H4B 0.9700 C11—H11A 0.9700
C5—H5A 0.9700 C11—H11B 0.9700
C5—H5B 0.9700 C12—C11 1.495 (6)
C5A—C5 1.491 (5) C12—H12A 0.9700
C5A—C10A 1.365 (5) C12—H12B 0.9700
C5B—C5A 1.421 (5)
C11—S1—C3 98.0 (2) C5B—C6—H6 120.3
C12—S2—C3 94.1 (2) C7—C6—C5B 119.3 (4)
C2—O1—C10B 109.5 (3) C7—C6—H6 120.3
O1—C2—C3 106.3 (3) C6—C7—C8 120.8 (4)
O1—C2—H2A 110.5 C6—C7—H7 119.6
O1—C2—H2B 110.5 C8—C7—H7 119.6
C3—C2—H2A 110.5 C9—C8—C7 122.1 (4)
C3—C2—H2B 110.5 C9—C8—H8 119.0
H2A—C2—H2B 108.7 C7—C8—H8 119.0
S2—C3—S1 106.7 (2) C8—C9—C9A 116.9 (4)
C2—C3—S1 110.1 (3) C8—C9—H9 121.5
C2—C3—S2 112.9 (3) C9A—C9—H9 121.5
C2—C3—C3A 101.7 (3) C9—C9A—C5B 122.9 (4)
C3A—C3—S1 116.9 (3) N10—C9A—C9 130.1 (4)
C3A—C3—S2 108.7 (3) N10—C9A—C5B 107.1 (4)
C3—C3A—H3A 109.3 O1—C10B—C3A 107.2 (3)
C4—C3A—C3 113.2 (3) O1—C10B—C10A 111.1 (3)
C4—C3A—H3A 109.3 O1—C10B—H10B 108.9
C4—C3A—C10B 113.8 (3) N10—C10A—C10B 124.4 (4)
C10B—C3A—C3 101.7 (3) C3A—C10B—H10B 108.9
C10B—C3A—H3A 109.3 C5A—C10A—N10 109.8 (4)
C3A—C4—H4A 109.3 C5A—C10A—C10B 125.7 (4)
C3A—C4—H4B 109.3 C10A—C10B—C3A 111.9 (3)
C5—C4—C3A 111.8 (3) C10A—C10B—H10B 108.9
C5—C4—H4A 109.3 C9A—N10—H10 124 (3)
C5—C4—H4B 109.3 C10A—N10—C9A 109.0 (4)
H4A—C4—H4B 107.9 C10A—N10—H10 127 (3)
C4—C5—H5A 109.9 S1—C11—H11A 109.7
C4—C5—H5B 109.9 S1—C11—H11B 109.7
C5A—C5—C4 108.7 (3) C12—C11—S1 109.8 (3)
C5A—C5—H5A 109.9 C12—C11—H11A 109.7
C5A—C5—H5B 109.9 C12—C11—H11B 109.7
H5A—C5—H5B 108.3 H11A—C11—H11B 108.2
C5B—C5A—C5 131.6 (4) S2—C12—H12A 110.3
C10A—C5A—C5 121.4 (4) S2—C12—H12B 110.3
C10A—C5A—C5B 106.8 (4) C11—C12—S2 107.1 (3)
C6—C5B—C5A 134.6 (4) C11—C12—H12A 110.3
C6—C5B—C9A 118.0 (4) C11—C12—H12B 110.3
C9A—C5B—C5A 107.4 (4) H12A—C12—H12B 108.6
C11—S1—C3—S2 15.4 (3) C5A—C5B—C6—C7 177.8 (4)
C11—S1—C3—C2 −107.4 (3) C9A—C5B—C6—C7 −0.2 (6)
C11—S1—C3—C3A 137.2 (3) C5—C5A—C10A—N10 −176.3 (4)
C3—S1—C11—C12 17.0 (4) C5—C5A—C10A—C10B 7.2 (6)
C12—S2—C3—S1 −36.2 (2) C5B—C5A—C10A—N10 −0.1 (5)
C12—S2—C3—C2 84.9 (3) C5B—C5A—C10A—C10B −176.6 (4)
C12—S2—C3—C3A −163.1 (3) C6—C5B—C5A—C5 −2.7 (8)
C3—S2—C12—C11 49.5 (4) C6—C5B—C5A—C10A −178.4 (5)
C10B—O1—C2—C3 22.4 (4) C9A—C5B—C5A—C5 175.4 (4)
C2—O1—C10B—C3A 0.5 (4) C9A—C5B—C5A—C10A −0.2 (4)
C2—O1—C10B—C10A 123.0 (4) C8—C7—C6—C5B −0.1 (7)
C4—C3A—C3—S1 31.6 (4) C6—C7—C8—C9 0.2 (7)
C4—C3A—C3—S2 152.4 (3) C9A—C9—C8—C7 0.0 (7)
C4—C3A—C3—C2 −88.3 (4) N10—C9A—C5B—C5A 0.5 (4)
C10B—C3A—C3—S1 154.1 (3) N10—C9A—C5B—C6 179.0 (4)
C10B—C3A—C3—S2 −85.1 (3) C9—C9A—C5B—C5A −178.1 (4)
C10B—C3A—C3—C2 34.2 (4) C9—C9A—C5B—C6 0.4 (6)
C3—C3A—C4—C5 171.0 (3) N10—C9A—C9—C8 −178.5 (4)
C10B—C3A—C4—C5 55.6 (4) C5B—C9A—C9—C8 −0.3 (6)
C4—C3A—C10B—O1 99.6 (4) N10—C10A—C10B—O1 55.3 (5)
C3—C3A—C10B—O1 −22.4 (4) N10—C10A—C10B—C3A 175.1 (4)
C4—C3A—C10B—C10A −22.4 (5) C5A—C10A—C10B—O1 −128.7 (4)
C3—C3A—C10B—C10A −144.4 (3) C5A—C10A—C10B—C3A −9.0 (6)
S1—C3—C2—O1 −160.3 (3) C9A—N10—C10A—C5A 0.4 (5)
S2—C3—C2—O1 80.6 (4) C9A—N10—C10A—C10B 176.9 (4)
C3A—C3—C2—O1 −35.7 (4) C10A—N10—C9A—C5B −0.5 (5)
C3A—C4—C5—C5A −55.3 (4) C10A—N10—C9A—C9 177.8 (4)
C5B—C5A—C5—C4 −149.7 (4) S2—C12—C11—S1 −44.2 (4)
C10A—C5A—C5—C4 25.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N10—H10···S2i 0.81 (4) 2.71 (4) 3.487 (4) 161 (4)
C3A—H3A···Cg2ii 0.98 2.85 3.725 (4) 149
C4—H4B···Cg1iii 0.97 2.79 3.556 (5) 136
C5—H5A···Cg1ii 0.97 2.96 3.714 (5) 135

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+2, −z; (iii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2478).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, ch. 7 and 8. New York: Marcel Decker.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  5. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  9. Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.
  10. Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675–677.
  11. Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.
  12. Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.
  13. Hökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114–116.
  14. Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.
  15. Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.
  16. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  17. Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem.34, 1239–1242.
  18. Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  19. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch 8 and 11. New York: Wiley.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006035/xu2478sup1.cif

e-65-0o595-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006035/xu2478Isup2.hkl

e-65-0o595-Isup2.hkl (67.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES