Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 4;65(Pt 3):o451. doi: 10.1107/S1600536809003614

9,9-Dimethyl-9-silafluorene

Jan Mewes a, Hans-Wolfram Lerner a, Michael Bolte a,*
PMCID: PMC2968660  PMID: 21582124

Abstract

The title compound, C14H14Si, crystallizes with two almost identical mol­ecules (r.m.s. deviation = 0.080 Å for all non-H atoms) in the asymmetric unit. All atoms of the silafluorene moiety lie in a common plane (r.m.s. deviations = 0.049 and 0.035 Å for the two mol­ecules in the asymmetric unit). The Si—Cmeth­yl bonds are significantly shorter [1.865 (4)–1.868 (4) Å] than the Si—Caromatic bonds [1.882 (3)–1.892 (3) Å]. Owing to strain in the five-membered ring, the endocyclic C—Si—C angles are reduced to 91.05 (14) and 91.21 (14)°.

Related literature

For the synthesis, see: Hudrlik et al. (2006). For related compounds, see: Kaufmann et al. (2008).graphic file with name e-65-0o451-scheme1.jpg

Experimental

Crystal data

  • C14H14Si

  • M r = 210.34

  • Monoclinic, Inline graphic

  • a = 16.1336 (8) Å

  • b = 8.7752 (5) Å

  • c = 17.0227 (11) Å

  • β = 92.208 (5)°

  • V = 2408.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 (2) K

  • 0.22 × 0.17 × 0.09 mm

Data collection

  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) T min = 0.966, T max = 0.976

  • 38382 measured reflections

  • 4404 independent reflections

  • 3274 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.157

  • S = 1.12

  • 4404 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003614/at2718sup1.cif

e-65-0o451-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003614/at2718Isup2.hkl

e-65-0o451-Isup2.hkl (215.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Our group has a long-standing interest in redox-switchable Lewis acids derived from ferrocenylboranes. Very recently we have synthesized 9-ferrocenyl-9-borafluorene derivatives (Kaufmann et al., 2008). Herein we describe the preparation and structure of 9,9-dimethyl-9-silafluorene (Me2SiC12H8) which was used as a starting material in the synthesis of these 9-ferrocenyl-9-borafluorene derivatives. The title compound was obtained by treatment of 2,2'-dilithio biphenylene with dichlorodimethylsilane Me2SiCl2 following a literature procedure (Hudrlik et al., 2006) as indicated in the equation below.

The title compound crystallizes with two almost identical molecules (r.m.s. deviation 0.080Å for all non-H atoms except the methyl groups) in the asymmetric unit (Fig. 1 and 2). All atoms of the silafluorene moiety lie in a common plane (r.m.s. deviation 0.049 Å and 0.035 Å for the two molecules in the asymmetric unit. The Si—Cmethyl bonds are considerably shorter [1.865 (4) Å to 1.868 (4) Å] than the Si—Caromatic bonds [1.882 (3) Å to 1.892 (3) Å]. Due to the strain in the five-membered ring, the innercyclic C—Si—C angle is reduced to 91.05 (14)° and 91.21 (14)°, respectively.

Experimental

A solution of Me2SiCl2 (1.9 ml, 2.03 g, 15.8 mmol) and NEt3 (1.9 ml, 1.38 g, 13.6 mmol) in 50 ml THF was added dropwise to a solution of 2,2'-dilithio biphenylene (14.6 mmol) which was generated from one equivalent of 2,2'-dibrom biphenylene (4.46 g, 14.6 mmol) and two equivalents of nBuLi (28.8 mmol) in 50 ml diethyl ether at 195 K. After stirring for 2 h the solution was filtered. After removing the solvent, the residue was treated with 50 ml water and 30 ml diethyl ether. After removing the diethyl ether from the organic layer, X-ray quality crystals were obtained by sublimation (80%). The NMR spectra were recorded on a Bruker DPX 250 and a Bruker avance 400 spectrometer. 9,9-dimethyl-9-silafluorene: 1H NMR (CDCl3, internal TMS): δ 0.43 (s; 6 H, MeSi), δ 7,28 (m; 2 H), δ 7.44 (m; 2 H), δ 7.64 (m; 2 H), δ 7.83 (m; 2 H). 13C{1H}NMR (CDCl3, internal TMS): δ -3.2 (MeSi), δ 120.8, δ 127.4, δ 130.2, δ 132.7, δ 139.0, δ 140.9.

Refinement

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H(aromatic) = 0.95 Å or C—H(methyl) = 0.98 Å, respectively.

Figures

Fig. 1.

Fig. 1.

Perspective view of the first molecule in the asymmetric unit of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Perspective view of the second molecule in the asymmetric unit of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C14H14Si F(000) = 896
Mr = 210.34 Dx = 1.160 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 18030 reflections
a = 16.1336 (8) Å θ = 2.4–27.5°
b = 8.7752 (5) Å µ = 0.16 mm1
c = 17.0227 (11) Å T = 173 K
β = 92.208 (5)° Plate, colourless
V = 2408.2 (2) Å3 0.22 × 0.17 × 0.09 mm
Z = 8

Data collection

Stoe IPDS-II two-circle diffractometer 4404 independent reflections
Radiation source: fine-focus sealed tube 3274 reflections with I > 2σ(I)
graphite Rint = 0.082
ω scans θmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) h = −19→19
Tmin = 0.966, Tmax = 0.976 k = −10→10
38382 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0668P)2 + 1.3736P] where P = (Fo2 + 2Fc2)/3
4404 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1A 0.04143 (6) 0.84574 (10) 0.17553 (5) 0.0343 (2)
C1A 0.09531 (19) 0.8679 (4) 0.27489 (19) 0.0346 (7)
C2A 0.15535 (19) 0.9860 (4) 0.27160 (19) 0.0336 (7)
C3A 0.2043 (2) 1.0224 (4) 0.3386 (2) 0.0428 (8)
H3A 0.2449 1.1007 0.3365 0.051*
C4A 0.1936 (3) 0.9439 (5) 0.4081 (2) 0.0515 (10)
H4A 0.2274 0.9681 0.4534 0.062*
C5A 0.1342 (3) 0.8308 (5) 0.4124 (2) 0.0515 (10)
H5A 0.1272 0.7782 0.4605 0.062*
C6A 0.0847 (2) 0.7941 (4) 0.3465 (2) 0.0439 (8)
H6A 0.0433 0.7178 0.3501 0.053*
C7A 0.0576 (2) 0.6583 (4) 0.1269 (2) 0.0466 (9)
H7A1 0.1172 0.6368 0.1256 0.070*
H7A2 0.0339 0.6616 0.0730 0.070*
H7A3 0.0303 0.5780 0.1563 0.070*
C8A −0.0723 (2) 0.8848 (4) 0.1776 (2) 0.0458 (9)
H8A1 −0.0813 0.9832 0.2032 0.069*
H8A2 −0.0993 0.8040 0.2070 0.069*
H8A3 −0.0958 0.8878 0.1237 0.069*
C11A 0.10420 (19) 1.0065 (4) 0.13428 (19) 0.0326 (7)
C12A 0.15905 (18) 1.0648 (4) 0.19395 (19) 0.0321 (7)
C13A 0.2105 (2) 1.1889 (4) 0.1784 (2) 0.0408 (8)
H13A 0.2475 1.2273 0.2184 0.049*
C14A 0.2074 (2) 1.2558 (4) 0.1047 (2) 0.0467 (9)
H14A 0.2415 1.3412 0.0947 0.056*
C15A 0.1546 (2) 1.1985 (4) 0.0452 (2) 0.0441 (9)
H15A 0.1532 1.2442 −0.0054 0.053*
C16A 0.1037 (2) 1.0741 (4) 0.0600 (2) 0.0387 (8)
H16A 0.0683 1.0348 0.0190 0.046*
Si1 0.46279 (5) 0.38341 (10) 0.17151 (5) 0.0319 (2)
C1 0.40267 (19) 0.4048 (4) 0.26355 (19) 0.0328 (7)
C2 0.34203 (18) 0.5214 (4) 0.25218 (19) 0.0319 (7)
C3 0.2873 (2) 0.5548 (4) 0.3116 (2) 0.0396 (8)
H3 0.2464 0.6318 0.3037 0.048*
C4 0.2928 (2) 0.4752 (5) 0.3820 (2) 0.0458 (9)
H4 0.2551 0.4971 0.4219 0.055*
C5 0.3532 (3) 0.3635 (4) 0.3947 (2) 0.0488 (9)
H5 0.3569 0.3104 0.4433 0.059*
C6 0.4083 (2) 0.3298 (4) 0.3358 (2) 0.0418 (8)
H6 0.4501 0.2549 0.3451 0.050*
C7 0.5764 (2) 0.4193 (4) 0.1862 (2) 0.0420 (8)
H7A 0.5852 0.5171 0.2130 0.063*
H7B 0.6022 0.4222 0.1351 0.063*
H7C 0.6015 0.3375 0.2183 0.063*
C8 0.4471 (2) 0.1964 (4) 0.1206 (2) 0.0432 (8)
H8A 0.3876 0.1767 0.1126 0.065*
H8B 0.4724 0.1151 0.1529 0.065*
H8C 0.4732 0.1994 0.0695 0.065*
C11 0.40308 (18) 0.5457 (4) 0.12296 (18) 0.0312 (7)
C12 0.34395 (18) 0.6015 (4) 0.17523 (18) 0.0297 (7)
C13 0.2947 (2) 0.7273 (4) 0.1539 (2) 0.0383 (8)
H13 0.2552 0.7648 0.1890 0.046*
C14 0.3034 (2) 0.7970 (4) 0.0819 (2) 0.0431 (8)
H14 0.2698 0.8824 0.0679 0.052*
C15 0.3610 (2) 0.7436 (4) 0.0297 (2) 0.0463 (9)
H15 0.3670 0.7922 −0.0196 0.056*
C16 0.4098 (2) 0.6178 (4) 0.0506 (2) 0.0414 (8)
H16 0.4485 0.5803 0.0147 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1A 0.0323 (5) 0.0327 (5) 0.0383 (5) −0.0072 (4) 0.0058 (3) −0.0003 (4)
C1A 0.0344 (16) 0.0312 (17) 0.0390 (18) 0.0049 (14) 0.0098 (13) −0.0021 (14)
C2A 0.0286 (16) 0.0329 (17) 0.0395 (18) 0.0051 (13) 0.0035 (13) −0.0057 (14)
C3A 0.0374 (18) 0.044 (2) 0.046 (2) 0.0087 (15) −0.0037 (15) −0.0084 (16)
C4A 0.064 (2) 0.055 (2) 0.035 (2) 0.018 (2) −0.0069 (17) −0.0116 (17)
C5A 0.068 (3) 0.053 (2) 0.0334 (19) 0.018 (2) 0.0061 (17) 0.0028 (16)
C6A 0.052 (2) 0.041 (2) 0.0398 (19) 0.0095 (16) 0.0133 (16) 0.0001 (15)
C7A 0.055 (2) 0.041 (2) 0.045 (2) −0.0138 (17) 0.0127 (16) −0.0058 (16)
C8A 0.0376 (18) 0.047 (2) 0.053 (2) −0.0107 (16) 0.0045 (15) 0.0038 (17)
C11A 0.0283 (16) 0.0328 (17) 0.0370 (17) −0.0029 (13) 0.0057 (13) −0.0016 (13)
C12A 0.0223 (14) 0.0317 (17) 0.0424 (18) 0.0010 (12) 0.0036 (12) −0.0069 (14)
C13A 0.0348 (18) 0.039 (2) 0.049 (2) −0.0062 (14) 0.0047 (15) −0.0071 (16)
C14A 0.0388 (19) 0.039 (2) 0.063 (2) −0.0138 (16) 0.0102 (16) 0.0006 (18)
C15A 0.045 (2) 0.045 (2) 0.042 (2) −0.0076 (16) 0.0103 (15) 0.0062 (16)
C16A 0.0334 (17) 0.044 (2) 0.0388 (18) −0.0071 (15) 0.0023 (14) −0.0011 (15)
Si1 0.0305 (4) 0.0289 (5) 0.0362 (5) 0.0054 (4) −0.0002 (3) 0.0007 (4)
C1 0.0345 (16) 0.0283 (16) 0.0352 (17) −0.0044 (13) −0.0035 (13) −0.0021 (13)
C2 0.0264 (15) 0.0319 (17) 0.0372 (17) −0.0055 (13) −0.0018 (12) −0.0062 (13)
C3 0.0367 (18) 0.044 (2) 0.0389 (19) −0.0070 (15) 0.0050 (14) −0.0105 (15)
C4 0.047 (2) 0.056 (2) 0.0352 (19) −0.0149 (18) 0.0078 (15) −0.0107 (17)
C5 0.065 (2) 0.049 (2) 0.0327 (18) −0.0198 (19) 0.0001 (16) 0.0003 (16)
C6 0.049 (2) 0.039 (2) 0.0379 (19) −0.0090 (16) −0.0025 (15) 0.0006 (15)
C7 0.0319 (17) 0.039 (2) 0.055 (2) 0.0053 (14) −0.0033 (15) 0.0023 (16)
C8 0.047 (2) 0.0363 (19) 0.046 (2) 0.0047 (16) 0.0006 (16) −0.0024 (15)
C11 0.0278 (15) 0.0296 (16) 0.0362 (17) 0.0029 (13) −0.0001 (12) −0.0014 (13)
C12 0.0266 (14) 0.0306 (16) 0.0317 (16) 0.0007 (13) −0.0014 (12) −0.0068 (13)
C13 0.0303 (17) 0.041 (2) 0.0438 (19) 0.0093 (14) −0.0010 (14) −0.0065 (15)
C14 0.0413 (19) 0.041 (2) 0.046 (2) 0.0183 (16) −0.0054 (15) −0.0008 (16)
C15 0.050 (2) 0.051 (2) 0.0377 (19) 0.0160 (17) −0.0006 (15) 0.0059 (16)
C16 0.0404 (18) 0.048 (2) 0.0363 (18) 0.0161 (16) 0.0052 (14) 0.0047 (15)

Geometric parameters (Å, °)

Si1A—C7A 1.865 (4) Si1—C7 1.867 (3)
Si1A—C8A 1.868 (4) Si1—C8 1.868 (4)
Si1A—C1A 1.882 (3) Si1—C1 1.884 (3)
Si1A—C11A 1.887 (3) Si1—C11 1.892 (3)
C1A—C6A 1.396 (5) C1—C6 1.396 (5)
C1A—C2A 1.421 (5) C1—C2 1.424 (4)
C2A—C3A 1.399 (5) C2—C3 1.399 (5)
C2A—C12A 1.495 (5) C2—C12 1.488 (4)
C3A—C4A 1.386 (5) C3—C4 1.387 (5)
C3A—H3A 0.9500 C3—H3 0.9500
C4A—C5A 1.384 (6) C4—C5 1.393 (6)
C4A—H4A 0.9500 C4—H4 0.9500
C5A—C6A 1.389 (5) C5—C6 1.396 (5)
C5A—H5A 0.9500 C5—H5 0.9500
C6A—H6A 0.9500 C6—H6 0.9500
C7A—H7A1 0.9800 C7—H7A 0.9800
C7A—H7A2 0.9800 C7—H7B 0.9800
C7A—H7A3 0.9800 C7—H7C 0.9800
C8A—H8A1 0.9800 C8—H8A 0.9800
C8A—H8A2 0.9800 C8—H8B 0.9800
C8A—H8A3 0.9800 C8—H8C 0.9800
C11A—C16A 1.396 (5) C11—C16 1.392 (5)
C11A—C12A 1.417 (4) C11—C12 1.417 (4)
C12A—C13A 1.401 (5) C12—C13 1.399 (4)
C13A—C14A 1.383 (5) C13—C14 1.381 (5)
C13A—H13A 0.9500 C13—H13 0.9500
C14A—C15A 1.392 (5) C14—C15 1.391 (5)
C14A—H14A 0.9500 C14—H14 0.9500
C15A—C16A 1.395 (5) C15—C16 1.394 (5)
C15A—H15A 0.9500 C15—H15 0.9500
C16A—H16A 0.9500 C16—H16 0.9500
C7A—Si1A—C8A 108.95 (18) C7—Si1—C8 108.96 (17)
C7A—Si1A—C1A 115.01 (17) C7—Si1—C1 113.95 (16)
C8A—Si1A—C1A 112.61 (16) C8—Si1—C1 114.13 (16)
C7A—Si1A—C11A 114.04 (15) C7—Si1—C11 114.35 (15)
C8A—Si1A—C11A 114.28 (16) C8—Si1—C11 113.64 (15)
C1A—Si1A—C11A 91.21 (14) C1—Si1—C11 91.05 (14)
C6A—C1A—C2A 118.6 (3) C6—C1—C2 118.7 (3)
C6A—C1A—Si1A 132.0 (3) C6—C1—Si1 131.9 (3)
C2A—C1A—Si1A 109.4 (2) C2—C1—Si1 109.4 (2)
C3A—C2A—C1A 119.9 (3) C3—C2—C1 120.1 (3)
C3A—C2A—C12A 125.1 (3) C3—C2—C12 124.9 (3)
C1A—C2A—C12A 115.0 (3) C1—C2—C12 114.9 (3)
C4A—C3A—C2A 119.8 (4) C4—C3—C2 119.8 (3)
C4A—C3A—H3A 120.1 C4—C3—H3 120.1
C2A—C3A—H3A 120.1 C2—C3—H3 120.1
C5A—C4A—C3A 120.7 (3) C3—C4—C5 120.7 (3)
C5A—C4A—H4A 119.6 C3—C4—H4 119.7
C3A—C4A—H4A 119.6 C5—C4—H4 119.7
C4A—C5A—C6A 120.1 (4) C4—C5—C6 119.9 (3)
C4A—C5A—H5A 120.0 C4—C5—H5 120.0
C6A—C5A—H5A 120.0 C6—C5—H5 120.0
C5A—C6A—C1A 120.8 (4) C1—C6—C5 120.7 (4)
C5A—C6A—H6A 119.6 C1—C6—H6 119.7
C1A—C6A—H6A 119.6 C5—C6—H6 119.7
Si1A—C7A—H7A1 109.5 Si1—C7—H7A 109.5
Si1A—C7A—H7A2 109.5 Si1—C7—H7B 109.5
H7A1—C7A—H7A2 109.5 H7A—C7—H7B 109.5
Si1A—C7A—H7A3 109.5 Si1—C7—H7C 109.5
H7A1—C7A—H7A3 109.5 H7A—C7—H7C 109.5
H7A2—C7A—H7A3 109.5 H7B—C7—H7C 109.5
Si1A—C8A—H8A1 109.5 Si1—C8—H8A 109.5
Si1A—C8A—H8A2 109.5 Si1—C8—H8B 109.5
H8A1—C8A—H8A2 109.5 H8A—C8—H8B 109.5
Si1A—C8A—H8A3 109.5 Si1—C8—H8C 109.5
H8A1—C8A—H8A3 109.5 H8A—C8—H8C 109.5
H8A2—C8A—H8A3 109.5 H8B—C8—H8C 109.5
C16A—C11A—C12A 118.5 (3) C16—C11—C12 118.4 (3)
C16A—C11A—Si1A 132.1 (2) C16—C11—Si1 132.3 (2)
C12A—C11A—Si1A 109.4 (2) C12—C11—Si1 109.3 (2)
C13A—C12A—C11A 120.2 (3) C13—C12—C11 119.9 (3)
C13A—C12A—C2A 124.8 (3) C13—C12—C2 124.8 (3)
C11A—C12A—C2A 114.9 (3) C11—C12—C2 115.3 (3)
C14A—C13A—C12A 120.0 (3) C14—C13—C12 120.3 (3)
C14A—C13A—H13A 120.0 C14—C13—H13 119.9
C12A—C13A—H13A 120.0 C12—C13—H13 119.9
C13A—C14A—C15A 120.4 (3) C13—C14—C15 120.7 (3)
C13A—C14A—H14A 119.8 C13—C14—H14 119.7
C15A—C14A—H14A 119.8 C15—C14—H14 119.7
C14A—C15A—C16A 119.9 (3) C14—C15—C16 119.2 (3)
C14A—C15A—H15A 120.0 C14—C15—H15 120.4
C16A—C15A—H15A 120.0 C16—C15—H15 120.4
C15A—C16A—C11A 120.9 (3) C11—C16—C15 121.6 (3)
C15A—C16A—H16A 119.5 C11—C16—H16 119.2
C11A—C16A—H16A 119.5 C15—C16—H16 119.2
C7A—Si1A—C1A—C6A −65.4 (4) C7—Si1—C1—C6 −60.0 (4)
C8A—Si1A—C1A—C6A 60.2 (4) C8—Si1—C1—C6 66.1 (3)
C11A—Si1A—C1A—C6A 177.2 (3) C11—Si1—C1—C6 −177.3 (3)
C7A—Si1A—C1A—C2A 116.2 (2) C7—Si1—C1—C2 119.8 (2)
C8A—Si1A—C1A—C2A −118.1 (2) C8—Si1—C1—C2 −114.2 (2)
C11A—Si1A—C1A—C2A −1.1 (2) C11—Si1—C1—C2 2.4 (2)
C6A—C1A—C2A—C3A 2.2 (5) C6—C1—C2—C3 −2.6 (4)
Si1A—C1A—C2A—C3A −179.2 (2) Si1—C1—C2—C3 177.6 (2)
C6A—C1A—C2A—C12A −176.6 (3) C6—C1—C2—C12 176.4 (3)
Si1A—C1A—C2A—C12A 2.0 (3) Si1—C1—C2—C12 −3.4 (3)
C1A—C2A—C3A—C4A −0.5 (5) C1—C2—C3—C4 0.7 (5)
C12A—C2A—C3A—C4A 178.1 (3) C12—C2—C3—C4 −178.1 (3)
C2A—C3A—C4A—C5A −0.7 (5) C2—C3—C4—C5 0.9 (5)
C3A—C4A—C5A—C6A 0.3 (6) C3—C4—C5—C6 −0.7 (5)
C4A—C5A—C6A—C1A 1.4 (5) C2—C1—C6—C5 2.8 (5)
C2A—C1A—C6A—C5A −2.6 (5) Si1—C1—C6—C5 −177.5 (3)
Si1A—C1A—C6A—C5A 179.2 (3) C4—C5—C6—C1 −1.2 (5)
C7A—Si1A—C11A—C16A 63.3 (4) C7—Si1—C11—C16 59.2 (4)
C8A—Si1A—C11A—C16A −62.9 (4) C8—Si1—C11—C16 −66.7 (4)
C1A—Si1A—C11A—C16A −178.5 (3) C1—Si1—C11—C16 176.2 (3)
C7A—Si1A—C11A—C12A −118.2 (2) C7—Si1—C11—C12 −117.9 (2)
C8A—Si1A—C11A—C12A 115.5 (2) C8—Si1—C11—C12 116.1 (2)
C1A—Si1A—C11A—C12A 0.0 (2) C1—Si1—C11—C12 −0.9 (2)
C16A—C11A—C12A—C13A 0.9 (5) C16—C11—C12—C13 −0.7 (5)
Si1A—C11A—C12A—C13A −177.8 (2) Si1—C11—C12—C13 176.9 (2)
C16A—C11A—C12A—C2A 179.9 (3) C16—C11—C12—C2 −178.4 (3)
Si1A—C11A—C12A—C2A 1.2 (3) Si1—C11—C12—C2 −0.8 (3)
C3A—C2A—C12A—C13A −1.9 (5) C3—C2—C12—C13 4.2 (5)
C1A—C2A—C12A—C13A 176.8 (3) C1—C2—C12—C13 −174.7 (3)
C3A—C2A—C12A—C11A 179.1 (3) C3—C2—C12—C11 −178.2 (3)
C1A—C2A—C12A—C11A −2.2 (4) C1—C2—C12—C11 2.8 (4)
C11A—C12A—C13A—C14A 0.5 (5) C11—C12—C13—C14 0.1 (5)
C2A—C12A—C13A—C14A −178.4 (3) C2—C12—C13—C14 177.6 (3)
C12A—C13A—C14A—C15A −1.3 (5) C12—C13—C14—C15 0.1 (5)
C13A—C14A—C15A—C16A 0.7 (6) C13—C14—C15—C16 0.3 (6)
C14A—C15A—C16A—C11A 0.7 (5) C12—C11—C16—C15 1.1 (5)
C12A—C11A—C16A—C15A −1.5 (5) Si1—C11—C16—C15 −175.9 (3)
Si1A—C11A—C16A—C15A 176.8 (3) C14—C15—C16—C11 −0.9 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2718).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Hudrlik, P. F., Dai, D. & Hudrlik, A. M. (2006). J. Organomet. Chem.691, 1257–1264.
  3. Kaufmann, L., Vitze, H., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Organometallics, 27, 6215–6221.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  6. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003614/at2718sup1.cif

e-65-0o451-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003614/at2718Isup2.hkl

e-65-0o451-Isup2.hkl (215.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES