Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):o591. doi: 10.1107/S1600536809006242

6-(2,6-Dimethyl­phen­yl)pyrido[2,3-d]pyrimidin-7-amine

Seiji Nukui a, Arnold L Rheingold b, Antonio DiPasquale b, Alex Yanovsky a,*
PMCID: PMC2968671  PMID: 21582246

Abstract

In the title compound, C15H14N4, the pyrido[2,3-d]pyrimidine system is almost ideally planar (r.m.s. deviation 0.028 Å) with its mean plane almost orthogonal to the 2,6-dimethyl­phenyl plane. The dihedral angle formed by these planes [87.3 (2)°] is close to the predicted value (89.7°) obtained by mol­ecular-mechanics force-field calculations. Only one of the two active amine H atoms participates in hydrogen bonding, which links mol­ecules into centrosymmetric dimers.

Related literature

For the structures of related pyrido[2,3-d]pyrimidine derivatives, see: Hamby et al. (1997); Trumpp-Kallmeyer et al. (1998). For the synthesis of the title compound, see: Bennett et al. (1981); Blankley & Bennett (1981). For mol­ecular-mechanics force-field calculations, see: Duan et al. (2003).graphic file with name e-65-0o591-scheme1.jpg

Experimental

Crystal data

  • C15H14N4

  • M r = 250.30

  • Monoclinic, Inline graphic

  • a = 16.272 (3) Å

  • b = 10.644 (2) Å

  • c = 15.234 (3) Å

  • β = 109.118 (3)°

  • V = 2493.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 208 K

  • 0.14 × 0.06 × 0.06 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.988, T max = 0.995

  • 6161 measured reflections

  • 2863 independent reflections

  • 1706 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.152

  • S = 0.98

  • 2863 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006242/rz2295sup1.cif

e-65-0o591-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006242/rz2295Isup2.hkl

e-65-0o591-Isup2.hkl (140.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.87 2.18 3.044 (2) 171

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The present X-ray study confirmed the structure of the compound reported in Bennett et al. (1981) as 6-(2,6-dimethylphenyl)pyrido[2,3-d]pyrimidin-7-amine. The pyrido[2,3-d]pyrimidine system of the molecule of the title compound (Fig. 1) is planar within 0.045 Å. The 2,6-dimethylphenyl plane is approximately orthogonal to the mean plane of the bicyclic system; the corresponding dihedral angle [87.3 (2)°] is close to predicted value (89.7°), obtained by molecular mechanics force field calculations (Duan et al., 2003). The overall geometry of the molecule is quite close to the structures of previously studied phenyl substituted 7-aminopyrido[2,3-d]pyrimidines (Hamby et al., 1997; Trumpp-Kallmeyer et al., 1998).

Only one of the two amine H atoms (H4A) participates in the H-bonding (Table 1), which is responsible for formation of centrosymmetric dimers in the crystal. The H4B atom is close to the π-electron density of the phenyl ring and is not involved in either intra- or intermolecular H-bonding.

Experimental

The title compound was synthesized according to Bennett et al. (1981) and Blankley & Bennett (1981).

Refinement

All H atoms were treated as riding with the C—H(aromatic), CH(methyl) and N—H distances of 0.94 Å, 0.97 Å and 0.87 Å respectively; the Uiso(H) were set to 1.2Ueq of the carrying atom for aromatic and amine, and 1.5Ueq for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 50% probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles with arbitrary small radius.

Fig. 2.

Fig. 2.

The crystal packing diagram viewed down the b-axis; H-bonds are shown as dashed lines.

Crystal data

C15H14N4 F(000) = 1056
Mr = 250.30 Dx = 1.334 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1859 reflections
a = 16.272 (3) Å θ = 2.3–27.8°
b = 10.644 (2) Å µ = 0.08 mm1
c = 15.234 (3) Å T = 208 K
β = 109.118 (3)° Block, colorless
V = 2493.0 (8) Å3 0.14 × 0.06 × 0.06 mm
Z = 8

Data collection

Bruker Kappa-APEX2 CCD area-detector diffractometer 2863 independent reflections
Radiation source: fine-focus sealed tube 1706 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −21→21
Tmin = 0.988, Tmax = 0.995 k = −13→10
6161 measured reflections l = −11→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0773P)2] where P = (Fo2 + 2Fc2)/3
2863 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.60306 (12) 0.28432 (17) 0.63650 (12) 0.0292 (4)
C2 0.66357 (12) 0.27235 (16) 0.58459 (13) 0.0286 (4)
C3 0.56152 (12) 0.17232 (17) 0.46410 (13) 0.0298 (4)
C4 0.46019 (14) 0.0833 (2) 0.34015 (15) 0.0425 (5)
H4 0.4461 0.0508 0.2796 0.051*
C5 0.41654 (13) 0.12949 (19) 0.46163 (14) 0.0386 (5)
H5 0.3743 0.1300 0.4914 0.046*
C6 0.49866 (12) 0.17682 (17) 0.50973 (13) 0.0309 (4)
C7 0.52301 (12) 0.23505 (18) 0.59840 (13) 0.0323 (5)
H7 0.4829 0.2392 0.6308 0.039*
C8 0.62801 (12) 0.35600 (18) 0.72563 (13) 0.0302 (4)
C9 0.66754 (12) 0.29645 (19) 0.81040 (13) 0.0322 (5)
C10 0.68565 (13) 0.3677 (2) 0.89141 (14) 0.0389 (5)
H10 0.7113 0.3285 0.9493 0.047*
C11 0.66687 (14) 0.4936 (2) 0.88847 (15) 0.0456 (6)
H11 0.6798 0.5399 0.9439 0.055*
C12 0.62906 (14) 0.5519 (2) 0.80438 (15) 0.0451 (6)
H12 0.6164 0.6382 0.8028 0.054*
C13 0.60939 (12) 0.48549 (19) 0.72209 (13) 0.0355 (5)
C14 0.69087 (15) 0.1587 (2) 0.81607 (15) 0.0472 (6)
H14A 0.6435 0.1098 0.8241 0.071*
H14B 0.7433 0.1446 0.8685 0.071*
H14C 0.7008 0.1331 0.7592 0.071*
C15 0.56830 (15) 0.5511 (2) 0.63050 (15) 0.0500 (6)
H15A 0.5664 0.6408 0.6409 0.075*
H15B 0.5097 0.5197 0.6016 0.075*
H15C 0.6024 0.5350 0.5901 0.075*
N1 0.64297 (10) 0.21747 (15) 0.50164 (10) 0.0315 (4)
N2 0.54103 (11) 0.12193 (16) 0.37767 (11) 0.0377 (4)
N3 0.39463 (11) 0.08379 (17) 0.37626 (12) 0.0435 (5)
N4 0.74304 (10) 0.32180 (15) 0.61956 (11) 0.0375 (4)
H4A 0.7791 0.3174 0.5883 0.045*
H4B 0.7587 0.3584 0.6736 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0304 (10) 0.0319 (10) 0.0273 (10) 0.0037 (8) 0.0122 (8) 0.0018 (8)
C2 0.0303 (10) 0.0287 (10) 0.0283 (10) 0.0014 (8) 0.0115 (8) 0.0037 (8)
C3 0.0311 (10) 0.0302 (10) 0.0292 (10) −0.0008 (8) 0.0116 (8) 0.0015 (8)
C4 0.0454 (13) 0.0515 (14) 0.0317 (11) −0.0075 (10) 0.0141 (10) −0.0073 (10)
C5 0.0325 (11) 0.0459 (12) 0.0393 (12) −0.0015 (9) 0.0142 (9) −0.0036 (10)
C6 0.0317 (10) 0.0326 (11) 0.0305 (10) 0.0015 (8) 0.0129 (8) 0.0018 (9)
C7 0.0303 (11) 0.0379 (11) 0.0340 (11) 0.0029 (8) 0.0178 (9) 0.0010 (9)
C8 0.0259 (10) 0.0378 (11) 0.0312 (10) −0.0020 (8) 0.0151 (8) −0.0034 (9)
C9 0.0281 (10) 0.0373 (11) 0.0330 (11) −0.0026 (8) 0.0124 (9) −0.0010 (9)
C10 0.0337 (11) 0.0530 (14) 0.0303 (11) −0.0046 (9) 0.0107 (9) −0.0028 (10)
C11 0.0475 (13) 0.0527 (15) 0.0372 (13) −0.0062 (10) 0.0144 (10) −0.0156 (11)
C12 0.0474 (13) 0.0382 (12) 0.0508 (14) 0.0008 (10) 0.0176 (11) −0.0090 (11)
C13 0.0358 (11) 0.0356 (11) 0.0374 (12) −0.0009 (9) 0.0149 (9) −0.0018 (9)
C14 0.0541 (14) 0.0454 (14) 0.0386 (12) 0.0074 (10) 0.0105 (10) 0.0038 (10)
C15 0.0591 (15) 0.0417 (13) 0.0499 (14) 0.0078 (11) 0.0188 (12) 0.0070 (11)
N1 0.0316 (9) 0.0381 (9) 0.0289 (9) −0.0014 (7) 0.0156 (7) −0.0005 (7)
N2 0.0390 (10) 0.0462 (10) 0.0306 (9) −0.0056 (8) 0.0150 (8) −0.0052 (8)
N3 0.0378 (10) 0.0520 (12) 0.0409 (11) −0.0065 (8) 0.0134 (8) −0.0079 (9)
N4 0.0336 (9) 0.0488 (11) 0.0347 (9) −0.0064 (8) 0.0175 (8) −0.0098 (8)

Geometric parameters (Å, °)

C1—C7 1.347 (3) C9—C10 1.395 (3)
C1—C2 1.456 (2) C9—C14 1.510 (3)
C1—C8 1.493 (2) C10—C11 1.372 (3)
C2—N1 1.332 (2) C10—H10 0.9400
C2—N4 1.335 (2) C11—C12 1.374 (3)
C3—N1 1.348 (2) C11—H11 0.9400
C3—N2 1.358 (2) C12—C13 1.382 (3)
C3—C6 1.413 (3) C12—H12 0.9400
C4—N2 1.317 (3) C13—C15 1.507 (3)
C4—N3 1.351 (3) C14—H14A 0.9700
C4—H4 0.9400 C14—H14B 0.9700
C5—N3 1.323 (2) C14—H14C 0.9700
C5—C6 1.391 (3) C15—H15A 0.9700
C5—H5 0.9400 C15—H15B 0.9700
C6—C7 1.419 (3) C15—H15C 0.9700
C7—H7 0.9400 N4—H4A 0.8700
C8—C9 1.392 (3) N4—H4B 0.8700
C8—C13 1.408 (3)
C7—C1—C2 117.54 (17) C9—C10—H10 119.3
C7—C1—C8 121.83 (16) C10—C11—C12 119.9 (2)
C2—C1—C8 120.51 (16) C10—C11—H11 120.1
N1—C2—N4 117.49 (16) C12—C11—H11 120.1
N1—C2—C1 123.29 (17) C11—C12—C13 121.0 (2)
N4—C2—C1 119.19 (17) C11—C12—H12 119.5
N1—C3—N2 116.55 (16) C13—C12—H12 119.5
N1—C3—C6 123.26 (17) C12—C13—C8 118.86 (19)
N2—C3—C6 120.19 (17) C12—C13—C15 120.24 (19)
N2—C4—N3 129.19 (19) C8—C13—C15 120.89 (18)
N2—C4—H4 115.4 C9—C14—H14A 109.5
N3—C4—H4 115.4 C9—C14—H14B 109.5
N3—C5—C6 123.63 (18) H14A—C14—H14B 109.5
N3—C5—H5 118.2 C9—C14—H14C 109.5
C6—C5—H5 118.2 H14A—C14—H14C 109.5
C5—C6—C3 116.98 (18) H14B—C14—H14C 109.5
C5—C6—C7 125.45 (17) C13—C15—H15A 109.5
C3—C6—C7 117.48 (17) C13—C15—H15B 109.5
C1—C7—C6 120.61 (17) H15A—C15—H15B 109.5
C1—C7—H7 119.7 C13—C15—H15C 109.5
C6—C7—H7 119.7 H15A—C15—H15C 109.5
C9—C8—C13 120.61 (17) H15B—C15—H15C 109.5
C9—C8—C1 121.08 (17) C2—N1—C3 117.76 (15)
C13—C8—C1 118.31 (17) C4—N2—C3 115.93 (17)
C8—C9—C10 118.21 (19) C5—N3—C4 114.02 (17)
C8—C9—C14 121.74 (17) C2—N4—H4A 120.0
C10—C9—C14 120.05 (18) C2—N4—H4B 120.0
C11—C10—C9 121.4 (2) H4A—N4—H4B 120.0
C11—C10—H10 119.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N1i 0.87 2.18 3.044 (2) 171

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2295).

References

  1. Bennett, L. R., Blankley, C. J., Fleming, R. W., Smith, R. D. & Tessman, D. K. (1981). J. Med. Chem.24, 382–389. [DOI] [PubMed]
  2. Blankley, C. J. & Bennett, L. R. (1981). US Patent No. 4 271 164.
  3. Bruker 2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  6. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xion, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J. & Kolman, P. (2003). J. Comput. Chem.24, 1999–2012. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Hamby, J. M., Connolly, C. J. C., Schroeder, M. C., Winters, R. T., Showalter, H. D. H., Panek, R. L., Major, T. C., Olsewski, B., Ryan, M. J., Dahring, T., Lu, G. H., Keiser, J., Amar, A., Shen, C., Kraker, A. J., Slintak, V., Nelson, J. M., Fry, D. W., Bradford, L., Hallak, H. & Doherty, A. M. (1997). J. Med. Chem.40, 2296–2303. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Trumpp-Kallmeyer, S., Rubin, J. R., Humblet, C., Hamby, J. M. & Showalter, H. D. H. (1998). J. Med. Chem.41, 1752–1763. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006242/rz2295sup1.cif

e-65-0o591-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006242/rz2295Isup2.hkl

e-65-0o591-Isup2.hkl (140.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES