Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):o498. doi: 10.1107/S1600536809004164

3-Benzyl­isochroman-1-one

Tariq Mahmood Babar a, Ghulam Qadeer a,*, Nasim Hasan Rama a,, Muhammad Khawar Rauf a, Wai-Yeung Wong b,§
PMCID: PMC2968672  PMID: 21582163

Abstract

In the mol­ecule of the title compound, C16H14O2, the aromatic rings are oriented at a dihedral angle of 78.49 (3)°. The heterocyclic ring adopts a twist conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For related structures, see: Schmalle et al. (1982); Schnebel et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-0o498-scheme1.jpg

Experimental

Crystal data

  • C16H14O2

  • M r = 238.27

  • Monoclinic, Inline graphic

  • a = 12.503 (5) Å

  • b = 8.0200 (9) Å

  • c = 12.892 (5) Å

  • β = 102.43 (2)°

  • V = 1262.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.32 × 0.26 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.820, T max = 0.983

  • 7148 measured reflections

  • 3024 independent reflections

  • 2546 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.136

  • S = 1.03

  • 3024 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004164/hk2615sup1.cif

e-65-0o498-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004164/hk2615Isup2.hkl

e-65-0o498-Isup2.hkl (148.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.53 3.2922 (18) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

The title compound was prepared in order to evalute its potential as antibacterial and antifungal agents. The CCDC search (Allen, 2002) showed that the crystal structures of rac-exo-tricarbonyl-(h6-3-phenyl isochromanone) -chromium (Schnebel et al., 2003) and 3,4-dihydro-8-hydroxy-3-(4-hydroxy- phenyl)-isocoumarin (Schmalle et al., 1982) have been reported, which have close resemblance as far as isochromane and attached phenyl ring is considered. We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and C (C11-C16) are, of course, planar, and they are oriented at a dihedral angle of 78.49 (3)°. Ring B (O2/C5-C9) is not planar, having total puckering amplitude, QT, of 2.420 (3) Å and twisted conformation [φ = 151.98 (3)° and θ = 88.50 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis, in which they may be effective in the stabilization of the structure.

Experimental

As shown in Scheme 2, a mixture of homophthalic acid (1.98 g, 11.0 mmol) and 2-phenylacetyl chloride (7.08 g, 46 mmol) was heated under reflux for 6 h at 473 K. After concentration, the residue was chromatographed on silica gel column using petroleum ether (333–353 K) to give 3-benzyl-1H-isochromen-1-one. 2-(2-oxo-3-phenylpropyl) benzoic acid was obtained by refluxing a solution of 3-benzyl-1H-isochromen-1-one (4 g, 15.9 mmol) in ethanol (200 ml) and potassium hydroxide (5%,200 ml) for 6 h. NaBH4 (1.6 g) was added to a solution of 2-(2-oxo-3-phenylpropyl) benzoic acid (4.81 g, 17.8 mmol) in sodium hydroxide (1%, 180 ml) and the resulting solution was stirred overnight at room temperature. After being acidified with HCl, the whole mixture was extracted with dichloromethane (2 \ times 15 ml). Usual work-up gave crude racemic hydroxy-acid, 2-(2-hydroxy-3-phenylpropyl)benzoic acid, which was dissolved in acetic anhydride (5 ml) and heated under reflux for 2 h to get the title compound (yield; 73%, m.p. 605-606 K). The crude compound was purified by column chromatography on silica gel with petroleum ether and recrystallized in ethanol.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C16H14O2 F(000) = 504
Mr = 238.27 Dx = 1.254 Mg m3
Monoclinic, P21/c Melting point: 332(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.503 (5) Å Cell parameters from 1316 reflections
b = 8.0200 (9) Å θ = 5.3–25.2°
c = 12.892 (5) Å µ = 0.08 mm1
β = 102.43 (2)° T = 294 K
V = 1262.4 (7) Å3 Block, colorless
Z = 4 0.32 × 0.26 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3024 independent reflections
Radiation source: fine-focus sealed tube 2546 reflections with I > 2σ(I)
graphite Rint = 0.021
ω and φ scans θmax = 28.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −16→16
Tmin = 0.820, Tmax = 0.983 k = −10→10
7148 measured reflections l = −10→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.1131P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3024 reflections Δρmax = 0.18 e Å3
164 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.058 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.00370 (8) 0.34647 (13) −0.09298 (6) 0.0694 (3)
O2 0.04862 (6) 0.20854 (10) 0.05531 (6) 0.0513 (2)
C1 −0.27750 (10) 0.22424 (17) 0.10333 (11) 0.0614 (3)
H1A −0.2984 0.1604 0.1558 0.074*
C2 −0.35219 (11) 0.3310 (2) 0.04219 (14) 0.0770 (4)
H2A −0.4230 0.3383 0.0536 0.092*
C3 −0.32221 (12) 0.4264 (2) −0.03548 (14) 0.0793 (4)
H3A −0.3728 0.4978 −0.0766 0.095*
C4 −0.21631 (11) 0.41640 (17) −0.05268 (11) 0.0653 (3)
H4A −0.1961 0.4815 −0.1050 0.078*
C5 −0.14040 (9) 0.30857 (13) 0.00867 (8) 0.0481 (3)
C6 −0.17032 (8) 0.21122 (13) 0.08690 (8) 0.0461 (2)
C7 −0.02835 (9) 0.29314 (14) −0.01389 (8) 0.0495 (3)
C8 0.02859 (8) 0.16880 (12) 0.15967 (7) 0.0439 (2)
H8A 0.0341 0.2713 0.2019 0.053*
C9 −0.08557 (9) 0.09595 (13) 0.14927 (8) 0.0484 (3)
H9A −0.0896 −0.0113 0.1138 0.058*
H9B −0.1002 0.0786 0.2194 0.058*
C10 0.11974 (9) 0.05047 (14) 0.21118 (9) 0.0528 (3)
H10A 0.1079 0.0185 0.2804 0.063*
H10B 0.1147 −0.0498 0.1683 0.063*
C11 0.23470 (9) 0.12051 (13) 0.22511 (9) 0.0506 (3)
C12 0.30019 (11) 0.08497 (17) 0.15378 (11) 0.0647 (3)
H12A 0.2725 0.0181 0.0952 0.078*
C13 0.40664 (12) 0.1470 (2) 0.16750 (15) 0.0809 (4)
H13A 0.4488 0.1209 0.1185 0.097*
C14 0.44906 (13) 0.2457 (2) 0.25261 (17) 0.0870 (5)
H14A 0.5200 0.2870 0.2622 0.104*
C15 0.38502 (15) 0.2832 (2) 0.32398 (15) 0.0894 (5)
H15A 0.4131 0.3509 0.3820 0.107*
C16 0.27839 (13) 0.22086 (18) 0.31051 (11) 0.0708 (4)
H16A 0.2365 0.2475 0.3597 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0738 (6) 0.0907 (7) 0.0453 (4) −0.0159 (5) 0.0161 (4) 0.0086 (4)
O2 0.0496 (4) 0.0622 (5) 0.0443 (4) −0.0036 (3) 0.0148 (3) 0.0004 (3)
C1 0.0497 (6) 0.0677 (7) 0.0686 (7) −0.0063 (5) 0.0169 (5) −0.0006 (6)
C2 0.0477 (6) 0.0826 (9) 0.0997 (11) 0.0023 (6) 0.0136 (7) 0.0030 (8)
C3 0.0588 (7) 0.0751 (9) 0.0955 (10) 0.0062 (6) −0.0020 (7) 0.0134 (8)
C4 0.0631 (7) 0.0630 (7) 0.0640 (7) −0.0052 (6) 0.0008 (5) 0.0107 (6)
C5 0.0504 (6) 0.0486 (5) 0.0430 (5) −0.0087 (4) 0.0045 (4) −0.0041 (4)
C6 0.0464 (5) 0.0478 (5) 0.0438 (5) −0.0073 (4) 0.0086 (4) −0.0074 (4)
C7 0.0566 (6) 0.0529 (6) 0.0387 (5) −0.0123 (4) 0.0098 (4) −0.0043 (4)
C8 0.0483 (5) 0.0457 (5) 0.0380 (5) −0.0015 (4) 0.0100 (4) −0.0036 (4)
C9 0.0506 (5) 0.0508 (5) 0.0453 (5) −0.0044 (4) 0.0138 (4) 0.0014 (4)
C10 0.0533 (6) 0.0488 (6) 0.0564 (6) 0.0023 (4) 0.0121 (4) 0.0014 (5)
C11 0.0500 (5) 0.0460 (5) 0.0527 (6) 0.0073 (4) 0.0047 (4) 0.0031 (4)
C12 0.0598 (7) 0.0671 (7) 0.0680 (7) 0.0025 (6) 0.0152 (6) −0.0048 (6)
C13 0.0600 (8) 0.0819 (9) 0.1042 (11) 0.0051 (7) 0.0252 (8) 0.0072 (9)
C14 0.0520 (7) 0.0795 (10) 0.1203 (14) −0.0013 (7) −0.0019 (8) 0.0093 (10)
C15 0.0777 (10) 0.0835 (10) 0.0908 (11) −0.0065 (8) −0.0181 (8) −0.0153 (8)
C16 0.0699 (8) 0.0730 (8) 0.0633 (8) 0.0056 (6) 0.0009 (6) −0.0116 (6)

Geometric parameters (Å, °)

C1—C2 1.382 (2) C8—H8A 0.9800
C1—C6 1.405 (2) C9—H9A 0.9700
C1—H1A 0.9300 C9—H9B 0.9700
C2—C3 1.375 (3) C10—C11 1.517 (2)
C2—H2A 0.9300 C10—H10A 0.9700
C3—C4 1.391 (3) C10—H10B 0.9700
C3—H3A 0.9300 C11—C16 1.378 (2)
C4—C5 1.3968 (19) C11—C12 1.386 (2)
C4—H4A 0.9300 C12—C13 1.396 (2)
C5—C6 1.3889 (18) C12—H12A 0.9300
C5—C7 1.496 (2) C13—C14 1.365 (3)
C6—C9 1.5023 (19) C13—H13A 0.9300
C7—O1 1.2054 (17) C14—C15 1.377 (3)
C7—O2 1.3463 (17) C14—H14A 0.9300
C8—O2 1.4559 (19) C15—C16 1.399 (3)
C8—C9 1.521 (2) C15—H15A 0.9300
C8—C10 1.5214 (19) C16—H16A 0.9300
C2—C1—C6 120.63 (13) C8—C9—H9A 109.5
C2—C1—H1A 119.7 C6—C9—H9B 109.5
C6—C1—H1A 119.7 C8—C9—H9B 109.5
C3—C2—C1 120.23 (14) H9A—C9—H9B 108.1
C3—C2—H2A 119.9 C11—C10—C8 114.97 (12)
C1—C2—H2A 119.9 C11—C10—H10A 108.5
C2—C3—C4 120.14 (13) C8—C10—H10A 108.5
C2—C3—H3A 119.9 C11—C10—H10B 108.5
C4—C3—H3A 119.9 C8—C10—H10B 108.5
C3—C4—C5 119.97 (13) H10A—C10—H10B 107.5
C3—C4—H4A 120.0 C16—C11—C12 117.44 (14)
C5—C4—H4A 120.0 C16—C11—C10 120.88 (11)
C6—C5—C4 120.18 (13) C12—C11—C10 121.68 (12)
C6—C5—C7 120.30 (10) C11—C12—C13 121.74 (15)
C4—C5—C7 119.46 (12) C11—C12—H12A 119.1
C5—C6—C1 118.84 (11) C13—C12—H12A 119.1
C5—C6—C9 117.73 (11) C14—C13—C12 120.23 (15)
C1—C6—C9 123.42 (11) C14—C13—H13A 119.9
O1—C7—O2 117.57 (12) C12—C13—H13A 119.9
O1—C7—C5 123.76 (11) C13—C14—C15 118.86 (16)
O2—C7—C5 118.59 (11) C13—C14—H14A 120.6
O2—C8—C9 110.33 (8) C15—C14—H14A 120.6
O2—C8—C10 106.16 (9) C14—C15—C16 120.99 (16)
C9—C8—C10 113.54 (11) C14—C15—H15A 119.5
O2—C8—H8A 108.9 C16—C15—H15A 119.5
C9—C8—H8A 108.9 C11—C16—C15 120.73 (15)
C10—C8—H8A 108.9 C11—C16—H16A 119.6
C6—C9—C8 110.56 (11) C15—C16—H16A 119.6
C6—C9—H9A 109.5 C7—O2—C8 118.82 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O1i 0.97 2.53 3.2922 (18) 135

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2615).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Schmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938–2941.
  8. Schnebel, M., Weidner, I., Wartchow, R. & Butenschon, H. (2003). Eur. J. Org. Chem. pp. 4363–4372.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004164/hk2615sup1.cif

e-65-0o498-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004164/hk2615Isup2.hkl

e-65-0o498-Isup2.hkl (148.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES