Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):m281. doi: 10.1107/S1600536809004802

μ-Bis(diphenyl­arsino)methane-κ2 As:As′-bis­[chloridogold(I)]

Uwe Monkowius a,*, Manfred Zabel b, Hartmut Yersin c
PMCID: PMC2968680  PMID: 21582067

Abstract

The title structure, [Au2Cl2(C25H22As2)], consists of discrete mol­ecules disposed about a crystallographic twofold axis. The Au atom exhibits a nearly linear coordination by As and Cl atoms. Au⋯Au inter­actions [3.4285Å(4) Å] and a weak intermolecular C—H⋯Cl hydrogen bond are present.

Related literature

For related structures, see: Healy (2003); Schmidbaur et al. (1977a ,b ). For the synthesis of related complexes, see: Monkowius et al. (2003a ,b ).graphic file with name e-65-0m281-scheme1.jpg

Experimental

Crystal data

  • [Au2Cl2(C25H22As2)]

  • M r = 937.11

  • Monoclinic, Inline graphic

  • a = 22.7171 (18) Å

  • b = 7.3151 (6) Å

  • c = 18.2047 (15) Å

  • β = 120.342 (8)°

  • V = 2610.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.96 mm−1

  • T = 173 K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: analytical [from crystal shape; X-SHAPE and X-RED in IPDS Software (Stoe & Cie, 1998)] T min = 0.051, T max = 0.083

  • 12353 measured reflections

  • 2790 independent reflections

  • 2431 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.055

  • S = 0.96

  • 2790 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: IPDS Software (Stoe & Cie, 1998); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004802/nc2133sup1.cif

e-65-0m281-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004802/nc2133Isup2.hkl

e-65-0m281-Isup2.hkl (137.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—As1 2.3426 (5)
Au1—Cl1 2.2887 (16)
As1—Au1—Cl1 174.82 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1ii 0.99 2.70 3.658 (4) 163

Symmetry code: (ii) Inline graphic.

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF).

supplementary crystallographic information

Comment

The title compound was prepared from dpam [dpam = bis(diphenylarsino)methane] and (tht)AuCl (tht = tetrahydrothiophene) in methylene chloride in nearly quantitative yields. It is isomorphous to the crystal structure of the phosphorus congener [dppm(AuCl)2], which was determined by Schmidbaur et al. (1977b) [a = 22.31 (1) Å, b = 7.215 (7) Å, c = 18.12 (1) Å and β = 120.43 (8)°]. The structure consists of discrete molecules of [dpam(AuCl)2] disposed about a crystallographic twofold axis, which passes through the C1 atom. The Au atom is in a standard linear coordination [As—Au—Cl 174.82 (4)°] with As—Au and Au—Cl bond lengths of 2.3426 (5) and 2.289 (2) Å, respectively. The Au—As···As—Au torsion angle is 66.78 (2)°, yielding a staggered conformation of both Ph2AsAuCl moieties and an intramolecular Au···Au distance of 3.4285 (4) Å, indicative of attractive aurophilic interactions. The shortest intermolecular Au···Au distance is 5.863 Å. In its crystal, the complexes are linked to infinite chains via weak C—H···Cl intermolecular hydrogen bonds with C···Cl distance of 3.658 (4) Å and a C1—H1a···Cl1ii angle of 163° (symmetry code: (ii) -x, y + 1, -z + 1/2).

For comparison, the geometrical data of the phosphorus compound are: Au—P 2.238 (5), Au—Cl 2.288 (7), Au···Au 3.351 (2) Å, P—Au—Cl 175 (2), Au—P···P—Au 67 (1)°. It should be noted, that a second polymorph of the phosphorus complex exists: Unlike the herein presented structure, there are no aurophilic bonds between the gold(I) atoms (Healy, 2003).

All attempts to prepare the 1:1 complex [(dpamAuCl)2] starting from the title compound analogous to the published synthesis of phosphorus complex [(dppmAuCl)2] (Schmidbaur et al., 1977a) failed.

Experimental

The title compound was prepared analogously to a previously published procedure (Monkowius et al., 2003a,b): dpam (0.22 g, 0.47 mmol) and (tht)AuCl (0.30 g, 0.94 mmol, tht = tetrahydrothiophene) were stirred in methylene chloride (20 ml) at room temperature for 2 h. The product was precipitated with n-pentane and isolated by filtration. Recrystallization from methylene chloride/diethyl ether yields colourless crystals suitable for X-ray crystallography. Yield: 0.40 g (0.43 mmol, 91%); 1H NMR (300 MHz, CDCl3): 7.55–7.60 (m, Ph—H, 8 H), 7.37–7.51 (m, Ph—H, 12 H), 3.48 p.p.m. (s, CH2, 2 H); 13C NMR (75.5 MHz, CDCl3): 134.63, 132.93, 130.44, 129.23, 25.08 p.p.m.; MS (ESI): m/z (%) = 1605.3 [L2Au3Cl2]+ (5), 1373.3 [L2Au3Cl]+ (47), 1141.3 [L2Au]+ (76), 901.1 [M—Cl]+ (25), 669.2 [LAu]+ (100); EA (C25H22As2Au2Cl2) calc.: C 32.04, H 2.37, found: C 32.01, H 2.37.

Refinement

The H atoms were positioned with idealized geometry and were refined isotropic using a riding model with C—H = 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme (symmetry code: (i) -x, y, -z + 1/2). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound depicting the intermolecular hydrogen bonds between H1A and Cl1ii (symmetry code: (ii) -x, y + 1, -z + 1/2). The H atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Au2Cl2(C25H22As2)] F(000) = 1720
Mr = 937.11 Cell parameters were determined by indexing 8000 reflections with I/sigma limit 6.0.
Monoclinic, C2/c Dx = 2.384 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 22.7171 (18) Å Cell parameters from 8000 reflections
b = 7.3151 (6) Å θ = 2.1–26.9°
c = 18.2047 (15) Å µ = 13.96 mm1
β = 120.342 (8)° T = 173 K
V = 2610.8 (4) Å3 Prism, colourless
Z = 4 0.24 × 0.20 × 0.18 mm

Data collection

Stoe IPDS diffractometer 2790 independent reflections
Radiation source: fine-focus sealed tube 2431 reflections with I > 2σ(I)
graphite Rint = 0.062
rotation scans θmax = 26.9°, θmin = 2.1°
Absorption correction: analytical [from crystal shape; X-SHAPE and X-RED in IPDS Software (Stoe & Cie, 1998)] h = −28→28
Tmin = 0.051, Tmax = 0.083 k = −9→9
12353 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0315P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
2790 reflections Δρmax = 1.65 e Å3
142 parameters Δρmin = −0.70 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00085 (4)

Special details

Experimental. Data were collected applying an imaging plate system (Stoe) with the following measurement parameters:Detector distance [mm] 65 Phi movement mode Oscillation Phi incr. [degrees] 1.2 Number of exposures 200 Irradiation / exposure [min] 2.00For a detailed description of the method see: Sheldrick, G. M., Paulus, E., Vertesy, L. & Hahn, F. (1995). Acta Cryst. B51, 89–98.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.00458 (1) 0.59917 (2) 0.15885 (1) 0.0364 (1)
As1 −0.05684 (2) 0.86199 (5) 0.15224 (2) 0.0286 (1)
Cl1 0.07339 (7) 0.35726 (17) 0.17281 (11) 0.0617 (5)
C1 0.00000 1.0152 (8) 0.25000 0.0335 (16)
C2 −0.08392 (19) 1.0208 (6) 0.0560 (3) 0.0345 (11)
C3 −0.0783 (2) 0.9600 (7) −0.0115 (3) 0.0430 (14)
C4 −0.0981 (2) 1.0716 (9) −0.0818 (3) 0.0553 (18)
C5 −0.1228 (2) 1.2445 (8) −0.0834 (3) 0.0583 (17)
C6 −0.1289 (3) 1.3050 (8) −0.0165 (4) 0.074 (2)
C7 −0.1091 (3) 1.1941 (7) 0.0543 (3) 0.0640 (19)
C8 −0.13949 (18) 0.8231 (6) 0.1565 (2) 0.0330 (10)
C9 −0.1733 (3) 0.6586 (8) 0.1285 (4) 0.0591 (19)
C10 −0.2351 (3) 0.6299 (9) 0.1269 (5) 0.078 (2)
C11 −0.2608 (2) 0.7632 (10) 0.1543 (4) 0.0641 (18)
C12 −0.2273 (3) 0.9248 (9) 0.1831 (4) 0.064 (2)
C13 −0.1665 (2) 0.9580 (8) 0.1839 (3) 0.0515 (16)
H1A −0.02910 1.09450 0.26260 0.0400*
H3A −0.06070 0.84140 −0.01000 0.0520*
H4A −0.09480 1.02880 −0.12880 0.0660*
H5A −0.13560 1.32180 −0.13100 0.0700*
H6A −0.14670 1.42340 −0.01840 0.0890*
H7A −0.11280 1.23700 0.10110 0.0770*
H9A −0.15470 0.56450 0.11040 0.0720*
H10A −0.25880 0.51740 0.10660 0.0930*
H11A −0.30250 0.74360 0.15340 0.0760*
H12A −0.24560 1.01640 0.20300 0.0770*
H13A −0.14390 1.07230 0.20310 0.0620*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.0406 (1) 0.0289 (1) 0.0443 (1) 0.0048 (1) 0.0248 (1) 0.0023 (1)
As1 0.0285 (2) 0.0273 (2) 0.0273 (2) 0.0012 (1) 0.0121 (1) −0.0007 (2)
Cl1 0.0723 (8) 0.0355 (6) 0.1015 (11) 0.0191 (6) 0.0618 (8) 0.0183 (7)
C1 0.026 (2) 0.032 (3) 0.034 (3) 0.0000 0.009 (2) 0.0000
C2 0.0340 (18) 0.032 (2) 0.0292 (19) −0.0015 (16) 0.0098 (15) 0.0020 (16)
C3 0.0330 (19) 0.057 (3) 0.037 (2) 0.0046 (19) 0.0163 (17) 0.004 (2)
C4 0.041 (2) 0.087 (4) 0.041 (3) 0.004 (2) 0.023 (2) 0.014 (3)
C5 0.054 (3) 0.065 (3) 0.044 (3) −0.007 (3) 0.016 (2) 0.017 (3)
C6 0.107 (5) 0.036 (3) 0.058 (3) 0.010 (3) 0.026 (3) 0.011 (3)
C7 0.106 (4) 0.038 (3) 0.038 (3) 0.010 (3) 0.029 (3) 0.001 (2)
C8 0.0248 (16) 0.041 (2) 0.0267 (18) −0.0002 (16) 0.0082 (14) −0.0010 (17)
C9 0.051 (3) 0.049 (3) 0.084 (4) −0.013 (2) 0.039 (3) −0.021 (3)
C10 0.058 (3) 0.071 (4) 0.108 (5) −0.028 (3) 0.045 (4) −0.019 (4)
C11 0.035 (2) 0.092 (4) 0.065 (3) −0.008 (3) 0.025 (2) 0.001 (3)
C12 0.043 (3) 0.087 (4) 0.065 (4) 0.006 (3) 0.029 (2) −0.015 (3)
C13 0.040 (2) 0.054 (3) 0.057 (3) −0.006 (2) 0.022 (2) −0.017 (2)

Geometric parameters (Å, °)

Au1—As1 2.3426 (5) C11—C12 1.360 (10)
Au1—Cl1 2.2887 (16) C12—C13 1.395 (9)
As1—C1 1.941 (3) C1—H1A 0.9900
As1—C2 1.926 (5) C1—H1Ai 0.9900
As1—C8 1.939 (5) C3—H3A 0.9500
C2—C3 1.372 (7) C4—H4A 0.9500
C2—C7 1.385 (7) C5—H5A 0.9500
C3—C4 1.388 (7) C6—H6A 0.9500
C4—C5 1.378 (9) C7—H7A 0.9500
C5—C6 1.367 (8) C9—H9A 0.9500
C6—C7 1.391 (8) C10—H10A 0.9500
C8—C9 1.379 (8) C11—H11A 0.9500
C8—C13 1.381 (7) C12—H12A 0.9500
C9—C10 1.405 (11) C13—H13A 0.9500
C10—C11 1.355 (10)
Au1···C6ii 3.773 (6) C1···H13Ai 2.9600
Au1···C7ii 3.756 (6) C1···H13A 2.9600
Au1···C4iii 3.910 (6) C1···H7A 3.0900
Au1···C5iii 3.759 (5) C3···H11Aviii 3.0300
Au1···C8i 3.601 (4) C4···H11Aviii 3.0200
Au1···C9i 3.857 (7) C13···H1A 2.8800
Au1···Au1i 3.4286 (4) C13···H4Aix 2.9500
Au1···H7Aii 3.5200 H1A···C13 2.8800
Au1···H9A 3.2700 H1A···H13A 2.2700
Au1···H3A 3.1900 H1A···Cl1x 2.7000
Au1···H6Aii 3.5600 H3A···Au1 3.1900
Au1···H4Aiii 3.6100 H4A···Au1iii 3.6100
Au1···H5Aiii 3.3100 H4A···Cl1v 3.0400
Cl1···H1Aiv 2.7000 H4A···C13xi 2.9500
Cl1···H13Aiv 2.8900 H5A···Au1iii 3.3100
Cl1···H4Av 3.0400 H5A···Cl1iii 3.0300
Cl1···H5Aiii 3.0300 H6A···Au1vii 3.5600
Cl1···H11Avi 3.1300 H7A···Au1vii 3.5200
C3···C3iii 3.416 (8) H7A···C1 3.0900
C3···C4iii 3.481 (7) H7A···H13A 2.5900
C4···Au1iii 3.910 (6) H9A···Au1 3.2700
C4···C3iii 3.481 (7) H11A···Cl1xii 3.1300
C5···Au1iii 3.759 (5) H11A···C3viii 3.0300
C6···Au1vii 3.773 (6) H11A···C4viii 3.0200
C7···Au1vii 3.756 (6) H13A···C1 2.9600
C8···Au1i 3.601 (4) H13A···H1A 2.2700
C9···Au1i 3.857 (7) H13A···H7A 2.5900
C1···H7Ai 3.0900 H13A···Cl1x 2.8900
As1—Au1—Cl1 174.82 (4) As1—C1—H1Ai 110.00
Au1—As1—C1 108.88 (12) As1i—C1—H1A 110.00
Au1—As1—C2 116.75 (14) H1A—C1—H1Ai 108.00
Au1—As1—C8 116.18 (13) As1i—C1—H1Ai 110.00
C1—As1—C2 104.16 (19) C2—C3—H3A 120.00
C1—As1—C8 104.90 (11) C4—C3—H3A 120.00
C2—As1—C8 104.72 (19) C3—C4—H4A 120.00
As1—C1—As1i 109.5 (3) C5—C4—H4A 120.00
As1—C2—C3 119.2 (3) C4—C5—H5A 120.00
As1—C2—C7 120.7 (4) C6—C5—H5A 120.00
C3—C2—C7 120.1 (4) C5—C6—H6A 120.00
C2—C3—C4 120.1 (5) C7—C6—H6A 120.00
C3—C4—C5 119.9 (5) C2—C7—H7A 120.00
C4—C5—C6 120.1 (5) C6—C7—H7A 120.00
C5—C6—C7 120.4 (6) C8—C9—H9A 120.00
C2—C7—C6 119.4 (5) C10—C9—H9A 120.00
As1—C8—C9 118.9 (4) C9—C10—H10A 120.00
As1—C8—C13 121.7 (4) C11—C10—H10A 120.00
C9—C8—C13 119.4 (5) C10—C11—H11A 120.00
C8—C9—C10 120.1 (6) C12—C11—H11A 120.00
C9—C10—C11 119.8 (6) C11—C12—H12A 119.00
C10—C11—C12 120.4 (6) C13—C12—H12A 120.00
C11—C12—C13 120.9 (6) C8—C13—H13A 120.00
C8—C13—C12 119.3 (5) C12—C13—H13A 120.00
As1—C1—H1A 110.00
Au1—As1—C1—As1i −34.87 (4) C3—C2—C7—C6 0.4 (9)
C2—As1—C1—As1i −160.10 (16) C7—C2—C3—C4 −0.3 (8)
C8—As1—C1—As1i 90.12 (13) As1—C2—C7—C6 −179.4 (5)
Au1—As1—C2—C3 12.2 (5) C2—C3—C4—C5 0.7 (8)
C1—As1—C2—C3 132.3 (4) C3—C4—C5—C6 −1.1 (8)
C8—As1—C2—C3 −117.9 (4) C4—C5—C6—C7 1.2 (10)
Au1—As1—C2—C7 −168.1 (4) C5—C6—C7—C2 −0.8 (10)
C1—As1—C2—C7 −48.1 (5) As1—C8—C9—C10 −176.9 (5)
C8—As1—C2—C7 61.9 (5) C13—C8—C9—C10 0.8 (8)
C2—As1—C8—C9 104.0 (4) As1—C8—C13—C12 177.9 (4)
Au1—As1—C8—C9 −26.4 (4) C9—C8—C13—C12 0.3 (7)
C1—As1—C8—C9 −146.6 (4) C8—C9—C10—C11 −1.1 (10)
C2—As1—C8—C13 −73.6 (4) C9—C10—C11—C12 0.2 (11)
Au1—As1—C8—C13 156.0 (3) C10—C11—C12—C13 1.0 (10)
C1—As1—C8—C13 35.7 (4) C11—C12—C13—C8 −1.2 (8)
As1—C2—C3—C4 179.4 (4)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, y−1, z; (iii) −x, −y+2, −z; (iv) −x, y−1, −z+1/2; (v) −x, −y+1, −z; (vi) x+1/2, y−1/2, z; (vii) x, y+1, z; (viii) −x−1/2, −y+3/2, −z; (ix) x, −y+2, z+1/2; (x) −x, y+1, −z+1/2; (xi) x, −y+2, z−1/2; (xii) x−1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Cl1x 0.99 2.70 3.658 (4) 163

Symmetry codes: (x) −x, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2133).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Healy, P. C. (2003). Acta Cryst. E59, m1112–m1114.
  3. Monkowius, U., Nogai, S. & Schmidbaur, H. (2003a). Organometallics, 22, 145–152.
  4. Monkowius, U., Nogai, S. & Schmidbaur, H. (2003b). Z. Naturforsch. Teil B, 58, 751–758.
  5. Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977a). Chem. Ber.110, 2751–2757.
  6. Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977b). Chem. Ber.110, 1748–1754.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stoe & Cie (1998). IPDS Software Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004802/nc2133sup1.cif

e-65-0m281-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004802/nc2133Isup2.hkl

e-65-0m281-Isup2.hkl (137.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES