Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):m321–m322. doi: 10.1107/S1600536809005893

(1-Butyl-1,4-diaza­bicyclo­[2.2.2]octon-1-ium-κN 4)trichloridocobalt(II)

Sanchai Luachan a, Bunlawee Yotnoi a, Timothy J Prior b, Apinpus Rujiwatra a,*
PMCID: PMC2968682  PMID: 21582095

Abstract

The title compound, [Co(C10H21N2)Cl3], was obtained as the by-product of the attempted synthesis of a cobalt sulfate framework using 1,4-diaza­bicyclo­[2.2.2]octane as an organic template. The asymmetric unit comprises two distinct mol­ecules, and in each, the cobalt(II) ions are tetra­hedrally coordinated by three chloride anions and one 1-butyl­diaza­bicyclo­[2.2.2]octan-1-ium cation. The organic ligands are generated in situ, and exhibit two forms differentiated by the eclipsed and staggered conformations of the butyl groups. These mol­ecules inter­act by way of C—H⋯Cl hydrogen bonds, forming a three-dimensional hydrogen-bonding array.

Related literature

Examples of closely related structures are N-methyl-1,4-diaza­bicyclo­(2.2.2) octonium trichloro-aqua-nickel(II) (Ross & Stucky, 1969) and N,N′-dimethyl-1,4-diaza­niabicyclo­[2.2.2]octane tetra­chloro­cobaltate (C8H18N2)[CoCl4] (Qu & Sun, 2005). The organic cation in both structures do not coordinate to the cobalt ion but, in each case, the C—H⋯Cl hydrogen-bonding inter­actions are similar to those in the title compound. For hydrogen bonding in related structures, see: Bremner & Harrison (2003).graphic file with name e-65-0m321-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H21N2)Cl3]

  • M r = 334.57

  • Monoclinic, Inline graphic

  • a = 8.379 (2) Å

  • b = 12.1090 (13) Å

  • c = 14.711 (4) Å

  • β = 91.683 (4)°

  • V = 1492.0 (6) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.69430 Å

  • μ = 1.67 mm−1

  • T = 120 K

  • 0.12 × 0.02 × 0.02 mm

Data collection

  • Bruker D8 with APEXII detector diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2004) T min = 0.597, T max = 0.746 (expected range = 0.774–0.967)

  • 12848 measured reflections

  • 8831 independent reflections

  • 7018 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.098

  • S = 1.04

  • 8831 reflections

  • 292 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983), 3980 Friedel pairs

  • Flack parameter: 0.064 (17)

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: TWINABS (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005893/lh2775sup1.cif

e-65-0m321-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005893/lh2775Isup2.hkl

e-65-0m321-Isup2.hkl (423.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl6i 0.99 2.66 3.567 (5) 153
C4—H4A⋯Cl1ii 0.99 2.66 3.511 (5) 145
C6—H6B⋯Cl3ii 0.99 2.69 3.606 (5) 154
C7—H7B⋯Cl3iii 0.99 2.80 3.729 (5) 157
C12—H12B⋯Cl5iv 0.99 2.62 3.485 (4) 146
C14—H14A⋯Cl6iv 0.99 2.75 3.567 (5) 140
C16—H16A⋯Cl1v 0.99 2.60 3.548 (4) 161
C16—H16B⋯Cl5v 0.99 2.81 3.739 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund, Center for Innovation in Chemistry and Thailand Toray Science Found­ation for financial support. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a Graduate Scholarship.

supplementary crystallographic information

Comment

The crystals of Co(C10H21N2)Cl3 (I) were unintentionally obtained as a by-product from the hydrothermal reaction between cobalt(II) sulfate heptahydrate and 1,4-diazabicyclo[2.2.2]octane in a water/butan-1-ol mixture. The N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand was presumably generated in situ under acidic conditions. The structure of I is built up from two distinct [Co(C10H21N2)Cl3] molecules as shown in Fig. 1. They are different in the spatial orientation of the butyl group of the N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand, one of which is in the eclipsed conformation (A) and the other is in the staggered conformation (B). The A molecules are connected by the C—H···Cl hydrogen bonding interactions to form a two-dimensional A sheet in the ab plane (Fig. 2), whereas the B molecules form the B sheet also in theab plane using similar C—H···Cl hydrogen bonding interactions (Fig. 3). The A and B sheets are then regularly alternated in the ABAB fashion, and linked by way of also the C—H···Cl hydrogen bonding interactions along c to give the infinite three-dimensional hydrogen bonding array (Fig. 4).

The hydrogen bond geometries found in I (H···Cl, 2.62–2.81 Å; C···Cl, 3.485 (4)–3.739 (4) Å; C—H···Cl, 140.00–164.00°) are well comparable to those found in related structures, e.g. (C6H14N2)[CoCl4] (Bremner & Harrison, 2003) and (C8H18N2)[CoCl4] (Qu & Sun, 2005).

Experimental

Crystals of I were obtained as a by-product from the hydrothermal reaction of cobalt(II) sulfate heptahydrate, 1,4-diazabicyclo[2.2.2]octane and hydrochloric acid in a water/butan-1-ol mixture at 453 K for 120 h.

Refinement

H atoms were placed in calcluated positions with C-H = 0.99Å or 0.98Å for methyl H atoms and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

The examined crystal was found to be twinned, composing of two crystal components which were miss-set by about two degrees. The crystal was therefore treated as a twin and the two components integrated separately using the same unit cell. Both components were used for the structure refinement and the twin fraction was found to be 0.698:0.302 (1).

Three alerts from checkCIF:

PLAT220_ALERT_2_C

PLAT222_ALERT_2_C

The rather weak van der Waals interactions involving the n-butyl chains mean there is considerable freedom for these carbon and hydrogen atoms to vibrate. The slightly enlarged displacement parameters observed are entirely expected on chemical grounds.

PLAT341_ALERT_3_C

The calculated estimated standard uncertainties associated with the unit-cell parameters are faithfully reproduced from the Bruker APEXII suite (Bruker, 2004). All observed data were used in their calculation. These give rise to moderate precision in the C—C bonds. To some extent this is a consequence of the integration procedure which uses two twin components - deconvolution of the low angle components is problematic as the two componenets are miss-set by approximately 2°.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 70% probability level.

Fig. 2.

Fig. 2.

View of the A sheet along the ab plane with the hydrogen bonding atoms indicated.

Fig. 3.

Fig. 3.

View of the B sheet along the ab plane with the hydrogen bonding atoms indicated.

Fig. 4.

Fig. 4.

The packing of A and B sheets along c in ABAB fashion.

Fig. 5.

Fig. 5.

Molecular packing in unit cell.

Crystal data

[Co(C10H21N2)Cl3] F(000) = 692
Mr = 334.57 Dx = 1.490 Mg m3
Monoclinic, P21 Synchrotron radiation, λ = 0.69430 Å
Hall symbol: P 2yb Cell parameters from 12848 reflections
a = 8.379 (2) Å θ = 1.4–30.7°
b = 12.1090 (13) Å µ = 1.67 mm1
c = 14.711 (4) Å T = 120 K
β = 91.683 (4)° Needle, blue
V = 1492.0 (6) Å3 0.12 × 0.02 × 0.02 mm
Z = 4

Data collection

Bruker D8 with APEXII detector diffractometer 8831 independent reflections
Radiation source: Daresbury SRS, UK 7018 reflections with I > 2σ(I)
silicon 111 Rint = 0.054
ω scans θmax = 30.7°, θmin = 1.4°
Absorption correction: multi-scan (TWINABS; Bruker, 2004) h = −12→12
Tmin = 0.597, Tmax = 0.746 k = −17→17
12848 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.2945P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
8831 reflections Δρmax = 0.65 e Å3
292 parameters Δρmin = −0.43 e Å3
1 restraint Absolute structure: Flack (1983), 3980 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.064 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.17969 (6) 0.70552 (4) 0.56075 (3) 0.02973 (12)
Cl1 0.08844 (13) 0.78922 (10) 0.68543 (6) 0.0382 (2)
Cl2 0.28560 (14) 0.53800 (9) 0.58911 (8) 0.0416 (2)
Cl3 0.32696 (13) 0.81305 (9) 0.47062 (7) 0.0373 (2)
N1 −0.0308 (4) 0.6782 (3) 0.48346 (19) 0.0264 (7)
N2 −0.2901 (4) 0.6376 (3) 0.3900 (2) 0.0278 (7)
C1 −0.1094 (5) 0.7827 (4) 0.4539 (3) 0.0304 (8)
H1A −0.0310 0.8306 0.4240 0.037*
H1B −0.1485 0.8224 0.5077 0.037*
C2 −0.2502 (5) 0.7587 (3) 0.3875 (3) 0.0296 (9)
H2A −0.3443 0.8026 0.4047 0.036*
H2B −0.2216 0.7801 0.3251 0.036*
C3 0.0056 (5) 0.6132 (4) 0.4005 (3) 0.0327 (9)
H3A 0.0741 0.5495 0.4175 0.039*
H3B 0.0647 0.6601 0.3578 0.039*
C4 −0.1487 (5) 0.5719 (4) 0.3539 (3) 0.0319 (9)
H4A −0.1630 0.4923 0.3665 0.038*
H4B −0.1430 0.5818 0.2872 0.038*
C5 −0.1470 (5) 0.6141 (4) 0.5373 (3) 0.0318 (8)
H5A −0.1588 0.6499 0.5972 0.038*
H5B −0.1048 0.5386 0.5480 0.038*
C6 −0.3093 (5) 0.6065 (4) 0.4892 (2) 0.0315 (8)
H6A −0.3853 0.6575 0.5179 0.038*
H6B −0.3516 0.5305 0.4937 0.038*
C7 −0.4381 (6) 0.6160 (4) 0.3329 (3) 0.0351 (9)
H7A −0.4196 0.6415 0.2701 0.042*
H7B −0.5264 0.6607 0.3569 0.042*
C8 −0.4898 (7) 0.4966 (4) 0.3294 (3) 0.0477 (13)
H8A −0.5210 0.4732 0.3909 0.057*
H8B −0.3982 0.4504 0.3118 0.057*
C9 −0.6289 (7) 0.4765 (5) 0.2626 (3) 0.0541 (15)
H9A −0.7187 0.5257 0.2779 0.065*
H9B −0.5958 0.4951 0.2004 0.065*
C10 −0.6843 (9) 0.3581 (7) 0.2648 (4) 0.086 (3)
H10A −0.5968 0.3094 0.2473 0.129*
H10B −0.7752 0.3484 0.2221 0.129*
H10C −0.7167 0.3393 0.3264 0.129*
Co2 0.86290 (6) 0.69012 (4) 1.06702 (3) 0.02719 (12)
Cl4 0.74916 (13) 0.52684 (9) 1.09830 (7) 0.0360 (2)
Cl5 0.70380 (13) 0.79352 (9) 0.97538 (7) 0.0361 (2)
Cl6 0.97391 (13) 0.78267 (9) 1.18605 (6) 0.0331 (2)
N3 1.0632 (4) 0.6586 (3) 0.98991 (19) 0.0256 (7)
N4 1.3114 (4) 0.6133 (3) 0.8981 (2) 0.0266 (7)
C11 1.1771 (5) 0.5881 (4) 1.0443 (2) 0.0335 (9)
H11A 1.1303 0.5138 1.0523 0.040*
H11B 1.1955 0.6211 1.1052 0.040*
C12 1.3367 (5) 0.5778 (3) 0.9963 (2) 0.0290 (8)
H12A 1.4181 0.6254 1.0268 0.035*
H12B 1.3748 0.5005 0.9990 0.035*
C13 1.0170 (5) 0.5989 (4) 0.9044 (3) 0.0323 (9)
H13A 0.9572 0.6493 0.8628 0.039*
H13B 0.9464 0.5360 0.9186 0.039*
C14 1.1659 (5) 0.5563 (4) 0.8579 (2) 0.0303 (9)
H14A 1.1755 0.4755 0.8667 0.036*
H14B 1.1569 0.5712 0.7918 0.036*
C15 1.1471 (5) 0.7610 (3) 0.9650 (3) 0.0314 (8)
H15A 1.1927 0.7963 1.0206 0.038*
H15B 1.0701 0.8131 0.9361 0.038*
C16 1.2827 (5) 0.7362 (3) 0.8985 (2) 0.0279 (8)
H16A 1.2516 0.7618 0.8366 0.033*
H16B 1.3814 0.7755 0.9183 0.033*
C17 1.4589 (5) 0.5863 (4) 0.8441 (3) 0.0345 (9)
H17A 1.5547 0.6134 0.8782 0.041*
H17B 1.4522 0.6265 0.7855 0.041*
C18 1.4796 (5) 0.4631 (4) 0.8249 (3) 0.0348 (9)
H18A 1.4422 0.4199 0.8773 0.042*
H18B 1.4131 0.4424 0.7708 0.042*
C19 1.6527 (5) 0.4346 (4) 0.8082 (3) 0.0385 (10)
H19A 1.6602 0.3550 0.7935 0.046*
H19B 1.7167 0.4477 0.8648 0.046*
C20 1.7244 (6) 0.5012 (4) 0.7312 (3) 0.0417 (11)
H20A 1.6572 0.4932 0.6760 0.062*
H20B 1.8321 0.4739 0.7197 0.062*
H20C 1.7300 0.5793 0.7485 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0326 (3) 0.0238 (3) 0.0327 (2) −0.0009 (2) −0.0002 (2) 0.0029 (2)
Cl1 0.0502 (6) 0.0355 (6) 0.0288 (4) −0.0037 (5) 0.0015 (4) −0.0005 (4)
Cl2 0.0429 (6) 0.0268 (5) 0.0546 (6) 0.0019 (5) −0.0071 (5) 0.0055 (4)
Cl3 0.0385 (5) 0.0285 (5) 0.0454 (5) −0.0021 (4) 0.0099 (4) 0.0031 (4)
N1 0.0319 (17) 0.0216 (17) 0.0260 (13) 0.0059 (13) 0.0046 (12) 0.0006 (12)
N2 0.0305 (18) 0.0259 (18) 0.0271 (15) 0.0015 (14) 0.0002 (13) −0.0009 (12)
C1 0.034 (2) 0.023 (2) 0.0347 (18) 0.0029 (17) 0.0007 (15) 0.0025 (15)
C2 0.036 (2) 0.024 (2) 0.0297 (18) 0.0071 (16) 0.0058 (16) −0.0001 (14)
C3 0.035 (2) 0.036 (2) 0.0273 (17) 0.0080 (18) 0.0036 (15) −0.0027 (15)
C4 0.035 (2) 0.026 (2) 0.0349 (19) 0.0051 (17) 0.0052 (16) −0.0050 (15)
C5 0.040 (2) 0.028 (2) 0.0277 (17) −0.0031 (18) 0.0017 (15) 0.0001 (14)
C6 0.041 (2) 0.031 (2) 0.0230 (16) −0.0036 (19) 0.0033 (15) 0.0048 (14)
C7 0.040 (2) 0.036 (2) 0.0294 (18) 0.0053 (19) 0.0000 (16) −0.0029 (15)
C8 0.058 (3) 0.045 (3) 0.040 (2) −0.015 (2) −0.005 (2) −0.0049 (19)
C9 0.045 (3) 0.077 (4) 0.040 (2) −0.015 (3) 0.005 (2) −0.018 (2)
C10 0.086 (5) 0.118 (7) 0.054 (3) −0.066 (5) 0.020 (3) −0.032 (4)
Co2 0.0293 (3) 0.0241 (3) 0.0285 (2) −0.0002 (2) 0.00579 (18) −0.0004 (2)
Cl4 0.0406 (6) 0.0265 (5) 0.0415 (5) −0.0042 (4) 0.0101 (4) 0.0004 (4)
Cl5 0.0366 (5) 0.0301 (6) 0.0414 (5) 0.0042 (4) −0.0033 (4) −0.0018 (4)
Cl6 0.0415 (5) 0.0306 (5) 0.0276 (4) −0.0026 (5) 0.0055 (4) −0.0014 (4)
N3 0.0284 (17) 0.0228 (17) 0.0258 (14) −0.0007 (13) 0.0045 (12) −0.0004 (11)
N4 0.0296 (17) 0.0228 (17) 0.0276 (15) −0.0018 (14) 0.0030 (12) −0.0029 (12)
C11 0.033 (2) 0.041 (2) 0.0269 (17) 0.0037 (19) 0.0052 (15) 0.0063 (16)
C12 0.034 (2) 0.0229 (19) 0.0305 (17) 0.0007 (16) 0.0021 (15) 0.0017 (14)
C13 0.028 (2) 0.039 (2) 0.0296 (18) −0.0032 (18) 0.0005 (15) −0.0075 (16)
C14 0.028 (2) 0.032 (2) 0.0308 (18) −0.0036 (17) 0.0071 (15) −0.0063 (15)
C15 0.040 (2) 0.021 (2) 0.0335 (18) −0.0005 (17) 0.0088 (17) 0.0034 (14)
C16 0.030 (2) 0.026 (2) 0.0269 (17) −0.0035 (15) 0.0037 (15) 0.0036 (14)
C17 0.035 (2) 0.035 (2) 0.035 (2) −0.0053 (19) 0.0128 (17) −0.0069 (17)
C18 0.037 (2) 0.031 (2) 0.036 (2) −0.0011 (18) 0.0072 (17) −0.0030 (16)
C19 0.034 (2) 0.046 (3) 0.036 (2) 0.006 (2) 0.0090 (18) 0.0050 (19)
C20 0.045 (3) 0.046 (3) 0.035 (2) −0.003 (2) 0.0141 (19) −0.0008 (19)

Geometric parameters (Å, °)

Co1—N1 2.096 (3) Co2—N3 2.088 (3)
Co1—Cl2 2.2483 (13) Co2—Cl4 2.2482 (12)
Co1—Cl1 2.2491 (12) Co2—Cl5 2.2487 (12)
Co1—Cl3 2.2521 (11) Co2—Cl6 2.2564 (11)
N1—C1 1.486 (5) N3—C15 1.477 (5)
N1—C3 1.491 (5) N3—C13 1.493 (5)
N1—C5 1.491 (5) N3—C11 1.495 (5)
N2—C7 1.500 (6) N4—C14 1.507 (5)
N2—C2 1.505 (5) N4—C16 1.508 (5)
N2—C6 1.520 (5) N4—C12 1.516 (5)
N2—C4 1.536 (5) N4—C17 1.524 (5)
C1—C2 1.537 (6) C11—C12 1.536 (6)
C1—H1A 0.9900 C11—H11A 0.9900
C1—H1B 0.9900 C11—H11B 0.9900
C2—H2A 0.9900 C12—H12A 0.9900
C2—H2B 0.9900 C12—H12B 0.9900
C3—C4 1.530 (6) C13—C14 1.530 (5)
C3—H3A 0.9900 C13—H13A 0.9900
C3—H3B 0.9900 C13—H13B 0.9900
C4—H4A 0.9900 C14—H14A 0.9900
C4—H4B 0.9900 C14—H14B 0.9900
C5—C6 1.517 (6) C15—C16 1.550 (5)
C5—H5A 0.9900 C15—H15A 0.9900
C5—H5B 0.9900 C15—H15B 0.9900
C6—H6A 0.9900 C16—H16A 0.9900
C6—H6B 0.9900 C16—H16B 0.9900
C7—C8 1.510 (7) C17—C18 1.530 (6)
C7—H7A 0.9900 C17—H17A 0.9900
C7—H7B 0.9900 C17—H17B 0.9900
C8—C9 1.522 (7) C18—C19 1.518 (6)
C8—H8A 0.9900 C18—H18A 0.9900
C8—H8B 0.9900 C18—H18B 0.9900
C9—C10 1.508 (9) C19—C20 1.528 (6)
C9—H9A 0.9900 C19—H19A 0.9900
C9—H9B 0.9900 C19—H19B 0.9900
C10—H10A 0.9800 C20—H20A 0.9800
C10—H10B 0.9800 C20—H20B 0.9800
C10—H10C 0.9800 C20—H20C 0.9800
N1—Co1—Cl2 106.21 (10) N3—Co2—Cl4 107.62 (10)
N1—Co1—Cl1 102.29 (9) N3—Co2—Cl5 104.35 (9)
Cl2—Co1—Cl1 113.39 (5) Cl4—Co2—Cl5 111.41 (5)
N1—Co1—Cl3 103.81 (9) N3—Co2—Cl6 101.11 (10)
Cl2—Co1—Cl3 114.25 (5) Cl4—Co2—Cl6 116.46 (4)
Cl1—Co1—Cl3 115.14 (5) Cl5—Co2—Cl6 114.35 (5)
C1—N1—C3 108.0 (3) C15—N3—C13 108.1 (3)
C1—N1—C5 107.9 (3) C15—N3—C11 108.1 (3)
C3—N1—C5 108.2 (3) C13—N3—C11 108.7 (3)
C1—N1—Co1 112.5 (2) C15—N3—Co2 112.2 (2)
C3—N1—Co1 109.8 (2) C13—N3—Co2 110.7 (2)
C5—N1—Co1 110.3 (2) C11—N3—Co2 108.9 (2)
C7—N2—C2 109.7 (3) C14—N4—C16 109.0 (3)
C7—N2—C6 112.7 (3) C14—N4—C12 109.5 (3)
C2—N2—C6 107.1 (3) C16—N4—C12 107.1 (3)
C7—N2—C4 110.5 (3) C14—N4—C17 110.9 (3)
C2—N2—C4 108.8 (3) C16—N4—C17 110.2 (3)
C6—N2—C4 108.0 (3) C12—N4—C17 110.1 (3)
N1—C1—C2 110.5 (3) N3—C11—C12 110.6 (3)
N1—C1—H1A 109.5 N3—C11—H11A 109.5
C2—C1—H1A 109.5 C12—C11—H11A 109.5
N1—C1—H1B 109.5 N3—C11—H11B 109.5
C2—C1—H1B 109.5 C12—C11—H11B 109.5
H1A—C1—H1B 108.1 H11A—C11—H11B 108.1
N2—C2—C1 109.6 (3) N4—C12—C11 108.4 (3)
N2—C2—H2A 109.8 N4—C12—H12A 110.0
C1—C2—H2A 109.8 C11—C12—H12A 110.0
N2—C2—H2B 109.8 N4—C12—H12B 110.0
C1—C2—H2B 109.8 C11—C12—H12B 110.0
H2A—C2—H2B 108.2 H12A—C12—H12B 108.4
N1—C3—C4 110.4 (3) N3—C13—C14 110.2 (3)
N1—C3—H3A 109.6 N3—C13—H13A 109.6
C4—C3—H3A 109.6 C14—C13—H13A 109.6
N1—C3—H3B 109.6 N3—C13—H13B 109.6
C4—C3—H3B 109.6 C14—C13—H13B 109.6
H3A—C3—H3B 108.1 H13A—C13—H13B 108.1
C3—C4—N2 109.0 (3) N4—C14—C13 109.4 (3)
C3—C4—H4A 109.9 N4—C14—H14A 109.8
N2—C4—H4A 109.9 C13—C14—H14A 109.8
C3—C4—H4B 109.9 N4—C14—H14B 109.8
N2—C4—H4B 109.9 C13—C14—H14B 109.8
H4A—C4—H4B 108.3 H14A—C14—H14B 108.3
N1—C5—C6 112.0 (3) N3—C15—C16 111.0 (3)
N1—C5—H5A 109.2 N3—C15—H15A 109.4
C6—C5—H5A 109.2 C16—C15—H15A 109.4
N1—C5—H5B 109.2 N3—C15—H15B 109.4
C6—C5—H5B 109.2 C16—C15—H15B 109.4
H5A—C5—H5B 107.9 H15A—C15—H15B 108.0
C5—C6—N2 108.3 (3) N4—C16—C15 108.3 (3)
C5—C6—H6A 110.0 N4—C16—H16A 110.0
N2—C6—H6A 110.0 C15—C16—H16A 110.0
C5—C6—H6B 110.0 N4—C16—H16B 110.0
N2—C6—H6B 110.0 C15—C16—H16B 110.0
H6A—C6—H6B 108.4 H16A—C16—H16B 108.4
N2—C7—C8 114.7 (4) N4—C17—C18 113.8 (3)
N2—C7—H7A 108.6 N4—C17—H17A 108.8
C8—C7—H7A 108.6 C18—C17—H17A 108.8
N2—C7—H7B 108.6 N4—C17—H17B 108.8
C8—C7—H7B 108.6 C18—C17—H17B 108.8
H7A—C7—H7B 107.6 H17A—C17—H17B 107.7
C7—C8—C9 112.8 (5) C19—C18—C17 111.5 (4)
C7—C8—H8A 109.0 C19—C18—H18A 109.3
C9—C8—H8A 109.0 C17—C18—H18A 109.3
C7—C8—H8B 109.0 C19—C18—H18B 109.3
C9—C8—H8B 109.0 C17—C18—H18B 109.3
H8A—C8—H8B 107.8 H18A—C18—H18B 108.0
C10—C9—C8 111.6 (6) C18—C19—C20 113.4 (4)
C10—C9—H9A 109.3 C18—C19—H19A 108.9
C8—C9—H9A 109.3 C20—C19—H19A 108.9
C10—C9—H9B 109.3 C18—C19—H19B 108.9
C8—C9—H9B 109.3 C20—C19—H19B 108.9
H9A—C9—H9B 108.0 H19A—C19—H19B 107.7
C9—C10—H10A 109.5 C19—C20—H20A 109.5
C9—C10—H10B 109.5 C19—C20—H20B 109.5
H10A—C10—H10B 109.5 H20A—C20—H20B 109.5
C9—C10—H10C 109.5 C19—C20—H20C 109.5
H10A—C10—H10C 109.5 H20A—C20—H20C 109.5
H10B—C10—H10C 109.5 H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cl6i 0.99 2.66 3.567 (5) 153
C4—H4A···Cl1ii 0.99 2.66 3.511 (5) 145
C6—H6B···Cl3ii 0.99 2.69 3.606 (5) 154
C7—H7B···Cl3iii 0.99 2.80 3.729 (5) 157
C12—H12B···Cl5iv 0.99 2.62 3.485 (4) 146
C14—H14A···Cl6iv 0.99 2.75 3.567 (5) 140
C16—H16A···Cl1v 0.99 2.60 3.548 (4) 161
C16—H16B···Cl5v 0.99 2.81 3.739 (4) 156

Symmetry codes: (i) x−1, y, z−1; (ii) −x, y−1/2, −z+1; (iii) x−1, y, z; (iv) −x+2, y−1/2, −z+2; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2775).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.
  3. Bruker (2004). TWINABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123.
  7. Ross, F. K. & Stucky, G. D. (1969). Inorg. Chem.8, 2734–2740.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005893/lh2775sup1.cif

e-65-0m321-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005893/lh2775Isup2.hkl

e-65-0m321-Isup2.hkl (423.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES