Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o562. doi: 10.1107/S1600536809005467

Dimethyl [hydr­oxy(2-nitro­phen­yl)meth­yl]phospho­nate

M Nawaz Tahir a,*, Nurcan Acar b, Hamza Yilmaz b, Muhammad Ilyas Tariq c, Dinçer Ülkü d
PMCID: PMC2968685  PMID: 21582219

Abstract

In the title compound, C9H12NO6P, intra­molecular C—H⋯O hydrogen bonds form five- and six-membered rings. In the crystal, inversion dimers lined by pairs of C—H⋯O hydrogen bonds occur with ring motifs R 2 2(10). The O atom of the hydr­oxy group behaves as an accepter and the benzene ring as donor. Adjacent dimers are connected through O—H⋯O links.

Related literature

For related structures, see: Acar et al. (2009); Tahir et al. (2007); Chen et al. (2008); Maliha et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-0o562-scheme1.jpg

Experimental

Crystal data

  • C9H12NO6P

  • M r = 261.17

  • Monoclinic, Inline graphic

  • a = 9.8685 (12) Å

  • b = 7.5081 (11) Å

  • c = 16.1052 (12) Å

  • β = 90.341 (1)°

  • V = 1193.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990) T min = 0.939, T max = 0.959

  • 2222 measured reflections

  • 2093 independent reflections

  • 1873 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections frequency: 120 min intensity decay: −1.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.231

  • S = 1.00

  • 2093 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005467/at2724sup1.cif

e-65-0o562-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005467/at2724Isup2.hkl

e-65-0o562-Isup2.hkl (100.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.87 (3) 1.81 (3) 2.674 (3) 171 (4)
C6—H6⋯O1 0.93 2.30 2.688 (3) 104
C6—H6⋯O1ii 0.93 2.58 3.343 (4) 140
C7—H7⋯O2 0.93 (3) 2.29 (3) 2.827 (4) 116 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

(R)-Dimethyl [(2-chlorophenyl)hydroxymethyl]phosphonate (Tahir et al., 2007) and Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Acar et al., 2009) have been reported by us. In continuation to the study of phosphonate compounds, we herein report the preparation and crystal structure of the title compound (I), (Fig 1).

Diethyl [hydroxy(2-nitrophenyl)methyl]phosphonate (II) (Chen et al., 2008) have also been published which have similar coordination around the C-atom having α-hydroxy group. But it is observed that the change of diethylphosphonate (II) with dimethylphosphonate (I) results in the S-conformation at the methine. In (I), the P═O is 1.467 (2) Å, whereas P–O and P–C have values of [1.557 (2), 1.563 (2) Å] and 1.829 (2) Å, respectively. The nitro group is oriented at an angle of 27.96 (23)° with the benzene ring A(C1—C6). There exist two intramolecular H-bondings which form five B(O1/C7/C1/C6/H6···O1) and six C(O2/N1/C2/C1/C7/H7···O2) membered rings. The title compound is dimerized (Fig 2) forming ring motifs R22(10) (Bernstein et al., 1995) if only intermolecular H-bonding is concerned. This ten membered ring is splitted into three rings through intramolecular H-bonding resulting in the formation of central four membered ring [O···H···O···H···O]. A similar ring has already been observed in 3-[(methylcarbamoyl)amino]-1H-isoindolium chloride (Maliha et al., 2009). The O-atom of hydroxy group behaves as an accepter and the benzene ring as donar. The adjacent dimers are connected through intermolecular H-bonds of O–H···O type, where the accepter is doubly bonded O the phosphonate group.

Experimental

A solution of O-nitrobenzaldehide (3.01 g, 20 mmole) and dimethylphosphonate (2.20 g, 20 mmole) was prepared in THF (50 ml). To this solution, a powder mixture of an equal amount of KF and commercial Al2O3 (2.5 g + 2.5 g) was added slowly and stirred for 48 h at 273 K. The product was filtered and the filtrate was evaporated at room temperature. The crystalline material obtained after two days was washed with ether and recrystallized in a solution mixture of petroleum ether and THF(1:1), [m.p: 383 K].

Refinement

All H-atoms appeared in Difference Fourier Map. The coordinations of the atom H7 bounded to the atom C7 and the atom H1 of the hydroxyl group were refined isotropically.

Thermal parameter of these H atoms was taken 1.2 and 1.5 times of the corresponding atoms, respectively.

The H atom (H7) bound to the atom C7 and the H atom (H1) of the hydroxyl group were located in a diffrerence map and their positions refined, with C—H = 0.93 (3) Å and 0.87 (3) Å. The other H atoms were positioned with idealized geometry and refined using a riding model, with C—H distances 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl and hydroxyl group Uiso(H) = 1.5 Ueq.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title compound, (C9H12NO6P), with the atom numbering scheme. The thermal ellpsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The broken lines indicate the intermolecular H-bondings.

Fig. 2.

Fig. 2.

The partial packing figure (PLATON: Spek, 2009) shows the formation of ring motifs through hydrogen bonding.

Crystal data

C9H12NO6P F(000) = 544
Mr = 261.17 Dx = 1.454 Mg m3
Monoclinic, P21/c Melting point: 383 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.8685 (12) Å Cell parameters from 25 reflections
b = 7.5081 (11) Å θ = 11.7–21.0°
c = 16.1052 (12) Å µ = 0.25 mm1
β = 90.341 (1)° T = 296 K
V = 1193.3 (2) Å3 Prismatic, brown
Z = 4 0.26 × 0.20 × 0.18 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.017
ω/2θ scans θmax = 25.0°, θmin = 2.5°
Absorption correction: ψ scan (MolEN; Fair, 1990) h = −11→0
Tmin = 0.939, Tmax = 0.959 k = −8→0
2222 measured reflections l = −19→19
2093 independent reflections 3 standard reflections every 120 min
1873 reflections with I > 2σ(I) intensity decay: −1.6%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.199P)2 + 0.3221P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2093 reflections Δρmax = 0.70 e Å3
162 parameters Δρmin = −0.50 e Å3
0 restraints

Special details

Experimental. the structure was solved by Patterson method using SHELX86 (Sheldrick, 2008); the whole molecule was recognized
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.11199 (7) 0.14188 (9) 0.16915 (4) 0.0429 (3)
O1 0.0588 (2) 0.4641 (3) 0.12234 (12) 0.0541 (7)
O2 0.4424 (3) 0.3284 (5) 0.20368 (16) 0.0854 (12)
O3 0.5644 (3) 0.1418 (5) 0.1375 (2) 0.0989 (14)
O4 0.0391 (2) 0.1450 (3) 0.24822 (14) 0.0574 (8)
O5 0.0264 (2) 0.0741 (3) 0.09399 (13) 0.0590 (8)
O6 0.2419 (2) 0.0229 (3) 0.16653 (17) 0.0679 (9)
N1 0.4732 (2) 0.2487 (4) 0.14047 (16) 0.0590 (9)
C1 0.2651 (3) 0.3507 (3) 0.06417 (15) 0.0380 (8)
C2 0.3983 (3) 0.2905 (4) 0.06340 (16) 0.0449 (8)
C3 0.4703 (3) 0.2673 (5) −0.0095 (2) 0.0580 (10)
C4 0.4101 (4) 0.3092 (5) −0.08461 (19) 0.0639 (11)
C5 0.2801 (3) 0.3732 (5) −0.08579 (19) 0.0590 (11)
C6 0.2083 (3) 0.3926 (4) −0.01258 (16) 0.0485 (9)
C7 0.1759 (3) 0.3618 (3) 0.14019 (16) 0.0394 (8)
C8 −0.1193 (4) 0.0865 (7) 0.0912 (3) 0.0860 (16)
C9 0.2422 (4) −0.1632 (5) 0.1836 (3) 0.0822 (14)
H1 0.031 (4) 0.514 (5) 0.168 (2) 0.0650*
H3 0.55850 0.22381 −0.00787 0.0697*
H4 0.45732 0.29422 −0.13392 0.0768*
H5 0.23957 0.40382 −0.13609 0.0710*
H6 0.11979 0.43474 −0.01489 0.0582*
H7 0.220 (3) 0.409 (4) 0.186 (2) 0.0472*
H8A −0.15277 0.02578 0.04276 0.1289*
H8B −0.14567 0.20944 0.08889 0.1289*
H8C −0.15650 0.03237 0.14001 0.1289*
H9A 0.33363 −0.20263 0.19280 0.1231*
H9B 0.20387 −0.22632 0.13727 0.1231*
H9C 0.18939 −0.18618 0.23233 0.1231*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0397 (5) 0.0498 (6) 0.0394 (6) −0.0010 (3) 0.0118 (3) 0.0050 (2)
O1 0.0612 (13) 0.0632 (12) 0.0381 (11) 0.0208 (10) 0.0100 (9) −0.0029 (8)
O2 0.0730 (17) 0.135 (3) 0.0482 (14) 0.0101 (15) −0.0100 (12) −0.0049 (14)
O3 0.0687 (19) 0.134 (3) 0.094 (2) 0.0365 (17) −0.0079 (17) 0.0130 (18)
O4 0.0558 (13) 0.0733 (14) 0.0432 (12) −0.0081 (10) 0.0176 (10) 0.0110 (9)
O5 0.0521 (13) 0.0700 (14) 0.0551 (13) −0.0075 (10) 0.0116 (9) −0.0146 (10)
O6 0.0453 (12) 0.0551 (13) 0.1034 (19) 0.0036 (9) 0.0211 (11) 0.0248 (12)
N1 0.0437 (13) 0.0792 (18) 0.0541 (15) −0.0038 (12) 0.0011 (11) 0.0101 (13)
C1 0.0422 (14) 0.0397 (13) 0.0322 (13) −0.0045 (9) 0.0082 (10) 0.0001 (8)
C2 0.0403 (13) 0.0502 (14) 0.0443 (14) −0.0063 (11) 0.0059 (10) 0.0011 (11)
C3 0.0421 (15) 0.073 (2) 0.0590 (17) −0.0008 (13) 0.0181 (13) −0.0008 (14)
C4 0.0621 (19) 0.086 (2) 0.0439 (16) −0.0039 (17) 0.0213 (13) −0.0057 (15)
C5 0.065 (2) 0.080 (2) 0.0322 (14) −0.0026 (15) 0.0077 (12) 0.0027 (12)
C6 0.0500 (16) 0.0613 (16) 0.0341 (14) 0.0044 (12) 0.0052 (11) 0.0036 (11)
C7 0.0442 (14) 0.0449 (14) 0.0291 (13) 0.0009 (10) 0.0065 (10) 0.0001 (9)
C8 0.056 (2) 0.114 (3) 0.088 (3) −0.004 (2) −0.0030 (18) −0.033 (2)
C9 0.068 (2) 0.060 (2) 0.119 (3) 0.0109 (16) 0.025 (2) 0.025 (2)

Geometric parameters (Å, °)

P1—O4 1.467 (2) C3—C4 1.381 (5)
P1—O5 1.557 (2) C4—C5 1.370 (5)
P1—O6 1.563 (2) C5—C6 1.387 (4)
P1—C7 1.829 (2) C3—H3 0.9300
O1—C7 1.416 (3) C4—H4 0.9300
O2—N1 1.221 (4) C5—H5 0.9300
O3—N1 1.207 (4) C6—H6 0.9300
O5—C8 1.441 (4) C7—H7 0.93 (3)
O6—C9 1.424 (4) C8—H8A 0.9600
O1—H1 0.87 (3) C8—H8B 0.9600
N1—C2 1.475 (4) C8—H8C 0.9600
C1—C6 1.390 (4) C9—H9A 0.9600
C1—C7 1.515 (4) C9—H9B 0.9600
C1—C2 1.390 (4) C9—H9C 0.9600
C2—C3 1.387 (4)
P1···H1i 3.14 (3) N1···O6 2.876 (3)
O1···O4 3.145 (3) N1···H7 2.87 (3)
O1···O5 2.981 (3) C2···O6 3.035 (4)
O1···C8 3.372 (5) C2···C4ix 3.566 (5)
O1···O4ii 2.674 (3) C3···C3ix 3.556 (5)
O1···C6iii 3.343 (4) C4···C2ix 3.566 (5)
O2···C7 2.827 (4) C6···O1iii 3.343 (4)
O2···O6 3.086 (4) C7···O2 2.827 (4)
O3···C8iv 3.240 (5) C8···O1 3.372 (5)
O4···O1 3.145 (3) C8···O3x 3.240 (5)
O4···O1i 2.674 (3) C8···O5v 3.350 (5)
O4···C9ii 3.320 (5) C9···O4i 3.320 (5)
O5···C8v 3.350 (5) H1···P1ii 3.14 (3)
O5···O1 2.981 (3) H1···O4ii 1.81 (3)
O6···O2 3.086 (4) H3···O3 2.4200
O6···C2 3.035 (4) H4···H9Axi 2.3800
O6···N1 2.876 (3) H4···O2xii 2.7800
O1···H6iii 2.5800 H5···O4xii 2.7300
O1···H6 2.3000 H6···O1 2.3000
O1···H8B 2.8300 H6···O1iii 2.5800
O1···H9Bvi 2.7400 H7···O2 2.29 (3)
O2···H7 2.29 (3) H7···N1 2.87 (3)
O2···H9Avii 2.7700 H8A···O5v 2.6500
O2···H4viii 2.7800 H8B···O1 2.8300
O3···H3 2.4200 H8C···O3x 2.8700
O3···H8Civ 2.8700 H8C···O4 2.7300
O4···H5viii 2.7300 H9A···O2xiii 2.7700
O4···H9C 2.9100 H9A···H4xi 2.3800
O4···H9Cii 2.6100 H9B···O1xiv 2.7400
O4···H8C 2.7300 H9C···O4 2.9100
O4···H1i 1.81 (3) H9C···O4i 2.6100
O5···H8Av 2.6500
O4—P1—O5 114.43 (12) P1—C7—O1 105.03 (19)
O4—P1—O6 116.05 (14) C2—C3—H3 120.00
O4—P1—C7 112.25 (13) C4—C3—H3 120.00
O5—P1—O6 103.49 (13) C3—C4—H4 120.00
O5—P1—C7 106.44 (12) C5—C4—H4 120.00
O6—P1—C7 103.00 (13) C4—C5—H5 120.00
P1—O5—C8 122.7 (2) C6—C5—H5 120.00
P1—O6—C9 123.8 (2) C1—C6—H6 119.00
C7—O1—H1 109 (2) C5—C6—H6 119.00
O2—N1—O3 123.3 (3) P1—C7—H7 107.7 (19)
O3—N1—C2 118.6 (3) O1—C7—H7 109.5 (18)
O2—N1—C2 118.1 (3) C1—C7—H7 113.1 (19)
C2—C1—C7 125.4 (2) O5—C8—H8A 109.00
C6—C1—C7 118.2 (3) O5—C8—H8B 109.00
C2—C1—C6 116.2 (2) O5—C8—H8C 109.00
N1—C2—C3 115.4 (3) H8A—C8—H8B 109.00
C1—C2—C3 122.5 (3) H8A—C8—H8C 109.00
N1—C2—C1 122.1 (2) H8B—C8—H8C 110.00
C2—C3—C4 119.5 (3) O6—C9—H9A 109.00
C3—C4—C5 119.3 (3) O6—C9—H9B 110.00
C4—C5—C6 120.5 (3) O6—C9—H9C 109.00
C1—C6—C5 121.8 (3) H9A—C9—H9B 109.00
P1—C7—C1 111.07 (16) H9A—C9—H9C 109.00
O1—C7—C1 110.1 (2) H9B—C9—H9C 109.00
O4—P1—O5—C8 25.6 (3) C6—C1—C2—N1 177.3 (3)
O6—P1—O5—C8 152.8 (3) C6—C1—C2—C3 −2.1 (4)
C7—P1—O5—C8 −99.0 (3) C7—C1—C2—N1 −7.1 (4)
O4—P1—O6—C9 58.0 (3) C7—C1—C2—C3 173.6 (3)
O5—P1—O6—C9 −68.2 (3) C2—C1—C6—C5 0.8 (4)
C7—P1—O6—C9 −179.0 (3) C7—C1—C6—C5 −175.2 (3)
O4—P1—C7—O1 −68.02 (19) C2—C1—C7—P1 −76.9 (3)
O4—P1—C7—C1 173.00 (18) C2—C1—C7—O1 167.2 (2)
O5—P1—C7—O1 57.90 (19) C6—C1—C7—P1 98.6 (2)
O5—P1—C7—C1 −61.1 (2) C6—C1—C7—O1 −17.3 (3)
O6—P1—C7—O1 166.43 (17) N1—C2—C3—C4 −177.7 (3)
O6—P1—C7—C1 47.5 (2) C1—C2—C3—C4 1.7 (5)
O2—N1—C2—C1 −28.4 (4) C2—C3—C4—C5 0.1 (5)
O2—N1—C2—C3 151.0 (3) C3—C4—C5—C6 −1.3 (6)
O3—N1—C2—C1 153.8 (3) C4—C5—C6—C1 0.9 (5)
O3—N1—C2—C3 −26.8 (4)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) x+1, y, z; (v) −x, −y, −z; (vi) x, y+1, z; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+1/2, z+1/2; (ix) −x+1, −y+1, −z; (x) x−1, y, z; (xi) −x+1, −y, −z; (xii) x, −y+1/2, z−1/2; (xiii) −x+1, y−1/2, −z+1/2; (xiv) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4ii 0.87 (3) 1.81 (3) 2.674 (3) 171 (4)
C6—H6···O1 0.9300 2.3000 2.688 (3) 104.00
C6—H6···O1iii 0.9300 2.5800 3.343 (4) 140.00
C7—H7···O2 0.93 (3) 2.29 (3) 2.827 (4) 116 (2)

Symmetry codes: (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2724).

References

  1. Acar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144. [DOI] [PMC free article] [PubMed]
  4. Enraf–Nonius (1992). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Fair, C. K. (1990). MolEN Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Maliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Siddiqui, H. L. (2009). Acta Cryst. E65, o448. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817–o3818.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005467/at2724sup1.cif

e-65-0o562-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005467/at2724Isup2.hkl

e-65-0o562-Isup2.hkl (100.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES