Abstract
The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1)°. No classical hydrogen bonds are observed in the crystal structure.
Related literature
For typical bond lengths in organic structures, see: Allen et al. (1987 ▶); For general background and related structures, see: Yang et al. (2004 ▶).
Experimental
Crystal data
C16H17N
M r = 223.31
Orthorhombic,
a = 5.544 (1) Å
b = 11.276 (2) Å
c = 20.369 (4) Å
V = 1273.4 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 298 K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.980, T max = 0.993
2671 measured reflections
1372 independent reflections
1500 reflections with I > 2σ(I)
R int = 0.062
3 standard reflections every 200 reflections intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.059
wR(F 2) = 0.147
S = 1.00
1372 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.17 e Å−3
Δρmin = −0.14 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 ▶); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005583/im2093sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005583/im2093Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.
supplementary crystallographic information
Comment
The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as OLED (Yang et al., 2004). We report herein the crystal structure of the title compound, (I), which is of interest to us in the field.
The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The tricyclic aromatic ring system is essentially planar. There are no classical hydrogen bonds observed in the crystal structure.
Experimental
The title compound, (I), was prepared by a method reported in literature (Yang et al., 2004). The crystals were obtained by dissolving (I) (0.2 g) in petroleum ether (b.p. 60–90 °C) (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.
Refinement
In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.
Figures
Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Crystal data
C16H17N | F(000) = 480 |
Mr = 223.31 | Dx = 1.165 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 5.544 (1) Å | θ = 9–13° |
b = 11.276 (2) Å | µ = 0.07 mm−1 |
c = 20.369 (4) Å | T = 298 K |
V = 1273.4 (4) Å3 | Needle, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Data collection
Enraf–Nonius CAD-4 diffractometer | 1500 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
graphite | θmax = 25.3°, θmin = 2.0° |
ω/2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→13 |
Tmin = 0.980, Tmax = 0.993 | l = −24→24 |
2671 measured reflections | 3 standard reflections every 200 reflections |
1372 independent reflections | intensity decay: 1% |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.06P)2 + 0.13P] where P = (Fo2 + 2Fc2)/3 |
1372 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
N | 0.1136 (6) | 0.1561 (2) | 0.16013 (14) | 0.0639 (8) | |
C1 | −0.0693 (11) | −0.1920 (4) | 0.0678 (2) | 0.1075 (18) | |
H1A | −0.2201 | −0.2294 | 0.0782 | 0.161* | |
H1B | 0.0570 | −0.2502 | 0.0680 | 0.161* | |
H1C | −0.0796 | −0.1563 | 0.0251 | 0.161* | |
C2 | −0.0144 (8) | −0.0965 (3) | 0.1188 (2) | 0.0770 (12) | |
H2A | −0.1447 | −0.0391 | 0.1191 | 0.092* | |
H2B | −0.0074 | −0.1329 | 0.1619 | 0.092* | |
C3 | 0.2163 (8) | −0.0341 (3) | 0.10593 (19) | 0.0748 (12) | |
H3A | 0.2051 | 0.0050 | 0.0636 | 0.090* | |
H3B | 0.3441 | −0.0926 | 0.1030 | 0.090* | |
C4 | 0.2869 (8) | 0.0583 (3) | 0.1576 (2) | 0.0784 (12) | |
H4A | 0.2952 | 0.0205 | 0.2003 | 0.094* | |
H4B | 0.4456 | 0.0894 | 0.1474 | 0.094* | |
C5 | −0.0714 (7) | 0.1694 (3) | 0.20522 (18) | 0.0642 (9) | |
C6 | −0.1348 (8) | 0.0987 (4) | 0.25810 (19) | 0.0764 (12) | |
H6A | −0.0507 | 0.0294 | 0.2676 | 0.092* | |
C7 | −0.3244 (11) | 0.1343 (4) | 0.2957 (2) | 0.0937 (15) | |
H7A | −0.3660 | 0.0899 | 0.3325 | 0.112* | |
C8 | −0.4570 (10) | 0.2346 (4) | 0.2807 (2) | 0.0953 (15) | |
H8A | −0.5891 | 0.2548 | 0.3065 | 0.114* | |
C9 | −0.3964 (8) | 0.3046 (4) | 0.2283 (2) | 0.0810 (12) | |
H9A | −0.4878 | 0.3713 | 0.2182 | 0.097* | |
C10 | −0.1954 (7) | 0.2748 (3) | 0.18976 (18) | 0.0620 (9) | |
C11 | −0.0777 (7) | 0.3272 (3) | 0.13483 (17) | 0.0621 (9) | |
C12 | −0.1083 (9) | 0.4315 (3) | 0.0996 (2) | 0.0741 (12) | |
H12A | −0.2352 | 0.4824 | 0.1095 | 0.089* | |
C13 | 0.0510 (11) | 0.4591 (3) | 0.0499 (2) | 0.0903 (15) | |
H13A | 0.0320 | 0.5295 | 0.0266 | 0.108* | |
C14 | 0.2388 (11) | 0.3834 (4) | 0.0341 (2) | 0.0879 (14) | |
H14A | 0.3439 | 0.4040 | 0.0004 | 0.105* | |
C15 | 0.2736 (9) | 0.2782 (3) | 0.06719 (19) | 0.0759 (11) | |
H15A | 0.3981 | 0.2269 | 0.0559 | 0.091* | |
C16 | 0.1142 (7) | 0.2517 (3) | 0.11837 (18) | 0.0621 (9) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.0568 (19) | 0.0591 (15) | 0.0759 (19) | 0.0061 (15) | −0.0073 (18) | 0.0044 (14) |
C1 | 0.124 (5) | 0.098 (3) | 0.100 (3) | −0.004 (4) | −0.009 (4) | −0.027 (3) |
C2 | 0.069 (3) | 0.083 (2) | 0.079 (3) | −0.001 (2) | 0.012 (3) | −0.003 (2) |
C3 | 0.072 (3) | 0.069 (2) | 0.083 (3) | 0.009 (2) | 0.005 (2) | 0.002 (2) |
C4 | 0.071 (3) | 0.068 (2) | 0.097 (3) | 0.016 (2) | −0.007 (3) | 0.003 (2) |
C5 | 0.067 (2) | 0.0624 (19) | 0.063 (2) | −0.0042 (19) | −0.008 (2) | −0.0021 (17) |
C6 | 0.074 (3) | 0.086 (3) | 0.070 (2) | −0.010 (2) | −0.007 (3) | 0.005 (2) |
C7 | 0.106 (4) | 0.102 (3) | 0.073 (3) | −0.017 (3) | 0.011 (3) | −0.005 (2) |
C8 | 0.090 (4) | 0.117 (3) | 0.079 (3) | −0.015 (3) | 0.015 (3) | −0.035 (3) |
C9 | 0.069 (3) | 0.087 (3) | 0.087 (3) | 0.003 (2) | −0.004 (3) | −0.018 (2) |
C10 | 0.061 (2) | 0.066 (2) | 0.059 (2) | 0.0000 (18) | −0.002 (2) | −0.0108 (17) |
C11 | 0.062 (2) | 0.0638 (18) | 0.060 (2) | −0.002 (2) | −0.009 (2) | −0.0041 (16) |
C12 | 0.082 (3) | 0.061 (2) | 0.080 (3) | 0.010 (2) | −0.017 (3) | −0.0081 (19) |
C13 | 0.120 (4) | 0.069 (2) | 0.081 (3) | −0.006 (3) | −0.017 (3) | 0.005 (2) |
C14 | 0.100 (4) | 0.091 (3) | 0.072 (3) | −0.017 (3) | 0.004 (3) | 0.008 (2) |
C15 | 0.070 (3) | 0.077 (2) | 0.081 (3) | −0.006 (2) | 0.010 (2) | −0.002 (2) |
C16 | 0.061 (2) | 0.0595 (17) | 0.066 (2) | 0.0048 (19) | −0.004 (2) | −0.0030 (17) |
Geometric parameters (Å, °)
N—C16 | 1.373 (4) | C6—H6A | 0.9300 |
N—C5 | 1.385 (4) | C7—C8 | 1.384 (6) |
N—C4 | 1.463 (4) | C7—H7A | 0.9300 |
C1—C2 | 1.527 (5) | C8—C9 | 1.369 (5) |
C1—H1A | 0.9600 | C8—H8A | 0.9300 |
C1—H1B | 0.9600 | C9—C10 | 1.403 (5) |
C1—H1C | 0.9600 | C9—H9A | 0.9300 |
C2—C3 | 1.483 (6) | C10—C11 | 1.423 (5) |
C2—H2A | 0.9700 | C11—C12 | 1.388 (4) |
C2—H2B | 0.9700 | C11—C16 | 1.403 (5) |
C3—C4 | 1.532 (5) | C12—C13 | 1.380 (6) |
C3—H3A | 0.9700 | C12—H12A | 0.9300 |
C3—H3B | 0.9700 | C13—C14 | 1.384 (6) |
C4—H4A | 0.9700 | C13—H13A | 0.9300 |
C4—H4B | 0.9700 | C14—C15 | 1.378 (5) |
C5—C6 | 1.385 (5) | C14—H14A | 0.9300 |
C5—C10 | 1.409 (4) | C15—C16 | 1.399 (5) |
C6—C7 | 1.361 (6) | C15—H15A | 0.9300 |
C16—N—C5 | 109.1 (3) | C5—C6—H6A | 121.2 |
C16—N—C4 | 124.6 (3) | C6—C7—C8 | 121.8 (4) |
C5—N—C4 | 126.2 (3) | C6—C7—H7A | 119.1 |
C2—C1—H1A | 109.5 | C8—C7—H7A | 119.1 |
C2—C1—H1B | 109.5 | C9—C8—C7 | 120.9 (5) |
H1A—C1—H1B | 109.5 | C9—C8—H8A | 119.6 |
C2—C1—H1C | 109.5 | C7—C8—H8A | 119.6 |
H1A—C1—H1C | 109.5 | C8—C9—C10 | 119.5 (4) |
H1B—C1—H1C | 109.5 | C8—C9—H9A | 120.2 |
C3—C2—C1 | 112.7 (4) | C10—C9—H9A | 120.2 |
C3—C2—H2A | 109.0 | C9—C10—C5 | 117.7 (4) |
C1—C2—H2A | 109.0 | C9—C10—C11 | 134.8 (4) |
C3—C2—H2B | 109.0 | C5—C10—C11 | 107.6 (3) |
C1—C2—H2B | 109.0 | C12—C11—C16 | 118.9 (4) |
H2A—C2—H2B | 107.8 | C12—C11—C10 | 134.5 (4) |
C2—C3—C4 | 114.9 (4) | C16—C11—C10 | 106.5 (3) |
C2—C3—H3A | 108.5 | C13—C12—C11 | 119.5 (4) |
C4—C3—H3A | 108.5 | C13—C12—H12A | 120.3 |
C2—C3—H3B | 108.5 | C11—C12—H12A | 120.3 |
C4—C3—H3B | 108.5 | C12—C13—C14 | 120.9 (4) |
H3A—C3—H3B | 107.5 | C12—C13—H13A | 119.6 |
N—C4—C3 | 111.6 (3) | C14—C13—H13A | 119.6 |
N—C4—H4A | 109.3 | C15—C14—C13 | 121.5 (4) |
C3—C4—H4A | 109.3 | C15—C14—H14A | 119.2 |
N—C4—H4B | 109.3 | C13—C14—H14A | 119.2 |
C3—C4—H4B | 109.3 | C14—C15—C16 | 117.4 (4) |
H4A—C4—H4B | 108.0 | C14—C15—H15A | 121.3 |
C6—C5—N | 129.9 (4) | C16—C15—H15A | 121.3 |
C6—C5—C10 | 122.4 (4) | N—C16—C15 | 129.1 (4) |
N—C5—C10 | 107.7 (3) | N—C16—C11 | 109.1 (3) |
C7—C6—C5 | 117.7 (4) | C15—C16—C11 | 121.8 (3) |
C7—C6—H6A | 121.2 | ||
C1—C2—C3—C4 | −177.0 (3) | C9—C10—C11—C12 | 3.9 (7) |
C16—N—C4—C3 | −82.4 (4) | C5—C10—C11—C12 | −176.8 (4) |
C5—N—C4—C3 | 99.4 (4) | C9—C10—C11—C16 | −179.1 (4) |
C2—C3—C4—N | −64.0 (4) | C5—C10—C11—C16 | 0.2 (4) |
C16—N—C5—C6 | −176.8 (4) | C16—C11—C12—C13 | −0.6 (5) |
C4—N—C5—C6 | 1.6 (6) | C10—C11—C12—C13 | 176.1 (4) |
C16—N—C5—C10 | 2.0 (4) | C11—C12—C13—C14 | 0.8 (6) |
C4—N—C5—C10 | −179.6 (3) | C12—C13—C14—C15 | 0.1 (7) |
N—C5—C6—C7 | 178.7 (4) | C13—C14—C15—C16 | −1.2 (6) |
C10—C5—C6—C7 | 0.1 (5) | C5—N—C16—C15 | 177.2 (4) |
C5—C6—C7—C8 | 2.6 (6) | C4—N—C16—C15 | −1.2 (6) |
C6—C7—C8—C9 | −2.3 (7) | C5—N—C16—C11 | −1.9 (4) |
C7—C8—C9—C10 | −0.7 (6) | C4—N—C16—C11 | 179.7 (3) |
C8—C9—C10—C5 | 3.2 (5) | C14—C15—C16—N | −177.5 (4) |
C8—C9—C10—C11 | −177.5 (4) | C14—C15—C16—C11 | 1.5 (5) |
C6—C5—C10—C9 | −3.0 (5) | C12—C11—C16—N | 178.6 (3) |
N—C5—C10—C9 | 178.1 (3) | C10—C11—C16—N | 1.0 (4) |
C6—C5—C10—C11 | 177.6 (3) | C12—C11—C16—C15 | −0.6 (5) |
N—C5—C10—C11 | −1.3 (4) | C10—C11—C16—C15 | −178.1 (3) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2093).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2004). J. Am. Chem. Soc.127, 3278–3279. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005583/im2093sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005583/im2093Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report