Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o642. doi: 10.1107/S1600536809006382

Diisopropyl [(benzoyl­amino)­(phen­yl)meth­yl]phospho­nate

Hua Fang a,*, Mei-Juan Fang b, Ying Xu b, Wen-Cheng Yu b, Yu-Fen Zhao c
PMCID: PMC2968692  PMID: 21582291

Abstract

The title compound, C20H26NO4P, has been obtained by the reaction of benzoyl chloride and diisoprop­yl[amino­(phen­yl)meth­yl]phospho­nate. The dihedral angle between the planes of the benzoyl­amino group and the phenyl ring is 77.0 (2)°. The crystal structure is stabilized by strong inter­molecular N—H⋯O hydrogen bonds between the doubly bonded phosphoryl O atom and the amide N atom which link the mol­ecules into pairs about a center of symmetry.

Related literature

For the biological activity and pharmaceutical inter­est of α-hydroxy­phospho­nic acid esters, see: Stowasser et al. (1992); Chen et al. (1995). For their use as reagents in the synthesis of enol ethers and α-ketophospho­nates, see: Babak & Rahman (2001). For the synthesis, see: Drescher et al. (1995). For bond lengths and angles in related compunds, see: Smaardijk et al. (1985).graphic file with name e-65-0o642-scheme1.jpg

Experimental

Crystal data

  • C20H26NO4P

  • M r = 375.39

  • Triclinic, Inline graphic

  • a = 10.839 (4) Å

  • b = 10.925 (5) Å

  • c = 11.057 (5) Å

  • α = 61.364 (8)°

  • β = 83.362 (8)°

  • γ = 60.470 (6)°

  • V = 987.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 273 K

  • 0.28 × 0.21 × 0.05 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.956, T max = 0.992

  • 4991 measured reflections

  • 3411 independent reflections

  • 2509 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.174

  • S = 0.98

  • 3411 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006382/fl2235sup1.cif

e-65-0o642-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006382/fl2235Isup2.hkl

e-65-0o642-Isup2.hkl (167.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.05 2.895 (3) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 40806032) and the Scientific Research Foundation of the Third Institute of Oceanography, SOA (No. 2009005).

supplementary crystallographic information

Comment

In recent years α-hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser et al., 1992) and pharmaceutical interest (Chen et al., 1995). They are useful reagents for the synthesis of enol ethers and α-ketophosphonates (Babak et al., 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk et al., 1985). The dihedral angle between the planes of the benzoylamino group and phenyl ring is 103.0 (2)° (Fig. 1). The amide N atom is involved in a hydrogen-bonding interaction with the phosphoryl O atom of a neighboring molecule linking the molecules into pairs around a centerof symmetry (Table 1 and Fig. 2).

Experimental

A solution of dry dichloromethane (20 ml) containing (amino-phenyl-methyl)-phosphonic acid diisopropyl ester (1 mmol, 0.27 g) and triethylamine (0.4 ml) was added dropwise to a solution of dichloromethane (10 ml) containing benzoyl chloride (1.2 mmol, 0.17 g). The reaction mixture was stirred for 6 h at room temperature and the solvent was then removed under reduced pressure to give a residue, which was extracted with ethyl acetate (3 × 15 ml). The solution was dried over anhydrous MgSO4 and concentrated under vacuum to obtain a slurry residue, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1) to give (I) as a colorless amorphous solid (Drescher, et al., 1995). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether /dichloromethane solution (1:1 v/v).

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) or 0.98 (CH), N—H = 0.86 Å and Uiso(H) = 1.2Ueq (aromatic C, CH and N) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

The title molecule showing the anisotropic displacement parameters of the non-hydrogen atoms at the 30% probability level. The H atoms are drawn as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram of title compound, showing the N—H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x + 1, -y + 2, -z + 1)].

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C20H26NO4P Z = 2
Mr = 375.39 F(000) = 400
Triclinic, P1 Dx = 1.263 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.839 (4) Å Cell parameters from 1689 reflections
b = 10.925 (5) Å θ = 2.3–27.7°
c = 11.057 (5) Å µ = 0.16 mm1
α = 61.364 (8)° T = 273 K
β = 83.362 (8)° Chunk, colorless
γ = 60.470 (6)° 0.28 × 0.21 × 0.05 mm
V = 987.3 (7) Å3

Data collection

Bruker APEX area-detector diffractometer 3411 independent reflections
Radiation source: fine-focus sealed tube 2509 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→12
Tmin = 0.956, Tmax = 0.992 k = −12→12
4991 measured reflections l = −10→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.097P)2] where P = (Fo2 + 2Fc2)/3
3411 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.73254 (8) 0.85680 (9) 0.47527 (8) 0.0311 (3)
N1 0.6453 (2) 0.6827 (3) 0.6988 (3) 0.0310 (6)
H1A 0.5566 0.7577 0.6718 0.037*
O1 0.8049 (2) 0.4184 (2) 0.8105 (3) 0.0546 (7)
C1 0.6797 (3) 0.5282 (4) 0.7762 (3) 0.0339 (7)
O2 0.6331 (2) 1.0278 (2) 0.4252 (2) 0.0412 (6)
C2 0.5598 (3) 0.4933 (3) 0.8226 (3) 0.0336 (7)
O3 0.6811 (2) 0.7980 (2) 0.3986 (2) 0.0400 (6)
C3 0.5965 (4) 0.3371 (4) 0.9147 (4) 0.0505 (9)
H3A 0.6928 0.2572 0.9424 0.061*
O4 0.8922 (2) 0.8119 (2) 0.4564 (2) 0.0401 (6)
C4 0.4921 (4) 0.2969 (5) 0.9671 (4) 0.0602 (11)
H4A 0.5182 0.1906 1.0313 0.072*
C5 0.3507 (4) 0.4130 (5) 0.9247 (4) 0.0514 (9)
H5A 0.2804 0.3859 0.9603 0.062*
C6 0.3123 (4) 0.5681 (4) 0.8304 (4) 0.0549 (10)
H6A 0.2158 0.6472 0.8006 0.066*
C7 0.4171 (3) 0.6079 (4) 0.7792 (4) 0.0505 (9)
H7A 0.3905 0.7142 0.7142 0.061*
C8 0.7582 (3) 0.7231 (3) 0.6607 (3) 0.0305 (7)
H8A 0.8470 0.6220 0.6812 0.037*
C9 0.7819 (3) 0.7826 (3) 0.7489 (3) 0.0307 (7)
C10 0.6722 (3) 0.9170 (4) 0.7536 (3) 0.0431 (8)
H10A 0.5844 0.9768 0.6961 0.052*
C11 0.6917 (4) 0.9627 (4) 0.8423 (4) 0.0531 (9)
H11A 0.6166 1.0523 0.8456 0.064*
C12 0.8210 (4) 0.8774 (5) 0.9261 (4) 0.0562 (10)
H12A 0.8336 0.9095 0.9856 0.067*
C13 0.9309 (4) 0.7456 (5) 0.9221 (4) 0.0526 (9)
H13A 1.0191 0.6879 0.9784 0.063*
C14 0.9111 (3) 0.6979 (4) 0.8344 (3) 0.0398 (8)
H14A 0.9862 0.6070 0.8329 0.048*
C15 0.7424 (4) 0.6316 (4) 0.4291 (4) 0.0435 (8)
H15A 0.7990 0.5581 0.5230 0.052*
C16 0.6184 (4) 0.6079 (5) 0.4248 (4) 0.0608 (10)
H16A 0.5615 0.6255 0.4942 0.091*
H16B 0.6538 0.5000 0.4432 0.091*
H16C 0.5604 0.6832 0.3342 0.091*
C17 0.8383 (4) 0.6056 (5) 0.3243 (4) 0.0635 (11)
H17A 0.9161 0.6209 0.3328 0.095*
H17B 0.7841 0.6815 0.2319 0.095*
H17C 0.8758 0.4979 0.3409 0.095*
C18 0.9332 (4) 0.9289 (4) 0.3580 (4) 0.0458 (8)
H18A 0.8731 1.0307 0.3593 0.055*
C19 0.9101 (5) 0.9581 (6) 0.2149 (4) 0.0810 (14)
H19A 0.8101 1.0015 0.1875 0.121*
H19B 0.9658 0.8583 0.2131 0.121*
H19C 0.9393 1.0334 0.1513 0.121*
C20 1.0845 (4) 0.8639 (6) 0.4093 (5) 0.0816 (14)
H20A 1.0916 0.8510 0.5009 0.122*
H20B 1.1162 0.9373 0.3470 0.122*
H20C 1.1438 0.7612 0.4133 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0254 (4) 0.0278 (5) 0.0360 (5) −0.0115 (3) 0.0062 (3) −0.0149 (4)
N1 0.0210 (12) 0.0262 (13) 0.0398 (14) −0.0105 (10) 0.0066 (11) −0.0139 (12)
O1 0.0308 (12) 0.0297 (13) 0.0752 (18) −0.0100 (10) 0.0017 (12) −0.0102 (13)
C1 0.0348 (17) 0.0299 (17) 0.0363 (17) −0.0170 (14) 0.0064 (14) −0.0150 (15)
O2 0.0342 (11) 0.0288 (12) 0.0497 (13) −0.0118 (9) 0.0050 (10) −0.0155 (11)
C2 0.0407 (17) 0.0328 (17) 0.0343 (17) −0.0228 (15) 0.0099 (14) −0.0176 (15)
O3 0.0379 (12) 0.0357 (12) 0.0442 (12) −0.0141 (10) 0.0030 (10) −0.0217 (11)
C3 0.049 (2) 0.036 (2) 0.054 (2) −0.0231 (17) 0.0061 (18) −0.0111 (18)
O4 0.0284 (11) 0.0367 (12) 0.0448 (13) −0.0162 (10) 0.0120 (10) −0.0142 (11)
C4 0.075 (3) 0.050 (2) 0.055 (2) −0.046 (2) 0.011 (2) −0.011 (2)
C5 0.059 (2) 0.073 (3) 0.052 (2) −0.051 (2) 0.0245 (19) −0.035 (2)
C6 0.0391 (19) 0.055 (2) 0.077 (3) −0.0298 (18) 0.0200 (19) −0.032 (2)
C7 0.0383 (18) 0.0377 (19) 0.070 (2) −0.0226 (16) 0.0128 (18) −0.0197 (19)
C8 0.0236 (14) 0.0258 (16) 0.0400 (17) −0.0107 (12) 0.0052 (13) −0.0164 (15)
C9 0.0266 (15) 0.0321 (17) 0.0336 (16) −0.0164 (13) 0.0097 (13) −0.0155 (15)
C10 0.0386 (18) 0.0392 (19) 0.0472 (19) −0.0152 (15) 0.0013 (16) −0.0216 (17)
C11 0.057 (2) 0.050 (2) 0.059 (2) −0.0245 (19) 0.012 (2) −0.035 (2)
C12 0.080 (3) 0.068 (3) 0.052 (2) −0.053 (2) 0.019 (2) −0.036 (2)
C13 0.052 (2) 0.066 (2) 0.044 (2) −0.040 (2) 0.0010 (18) −0.018 (2)
C14 0.0338 (17) 0.0424 (19) 0.0400 (17) −0.0211 (15) 0.0077 (15) −0.0163 (16)
C15 0.0454 (19) 0.0363 (18) 0.048 (2) −0.0177 (15) 0.0026 (17) −0.0213 (17)
C16 0.064 (2) 0.068 (3) 0.072 (3) −0.041 (2) 0.019 (2) −0.043 (2)
C17 0.058 (2) 0.068 (3) 0.082 (3) −0.033 (2) 0.033 (2) −0.052 (3)
C18 0.0456 (19) 0.044 (2) 0.049 (2) −0.0285 (17) 0.0128 (17) −0.0182 (18)
C19 0.095 (3) 0.108 (4) 0.050 (2) −0.073 (3) 0.020 (2) −0.023 (3)
C20 0.063 (3) 0.094 (3) 0.074 (3) −0.056 (3) 0.006 (2) −0.013 (3)

Geometric parameters (Å, °)

P1—O2 1.456 (2) C10—H10A 0.9300
P1—O3 1.559 (2) C11—C12 1.369 (5)
P1—O4 1.567 (2) C11—H11A 0.9300
P1—C8 1.809 (3) C12—C13 1.361 (5)
N1—C1 1.337 (4) C12—H12A 0.9300
N1—C8 1.451 (4) C13—C14 1.379 (5)
N1—H1A 0.8600 C13—H13A 0.9300
O1—C1 1.226 (3) C14—H14A 0.9300
C1—C2 1.498 (4) C15—C16 1.498 (5)
C2—C3 1.365 (4) C15—C17 1.500 (5)
C2—C7 1.370 (4) C15—H15A 0.9800
O3—C15 1.460 (4) C16—H16A 0.9600
C3—C4 1.380 (5) C16—H16B 0.9600
C3—H3A 0.9300 C16—H16C 0.9600
O4—C18 1.460 (4) C17—H17A 0.9600
C4—C5 1.363 (5) C17—H17B 0.9600
C4—H4A 0.9300 C17—H17C 0.9600
C5—C6 1.358 (5) C18—C20 1.482 (5)
C5—H5A 0.9300 C18—C19 1.483 (5)
C6—C7 1.380 (5) C18—H18A 0.9800
C6—H6A 0.9300 C19—H19A 0.9600
C7—H7A 0.9300 C19—H19B 0.9600
C8—C9 1.507 (4) C19—H19C 0.9600
C8—H8A 0.9800 C20—H20A 0.9600
C9—C14 1.378 (4) C20—H20B 0.9600
C9—C10 1.382 (4) C20—H20C 0.9600
C10—C11 1.370 (4)
O2—P1—O3 109.31 (12) C10—C11—H11A 119.7
O2—P1—O4 114.66 (12) C13—C12—C11 119.9 (3)
O3—P1—O4 108.59 (12) C13—C12—H12A 120.0
O2—P1—C8 116.66 (13) C11—C12—H12A 120.0
O3—P1—C8 107.29 (13) C12—C13—C14 119.7 (3)
O4—P1—C8 99.67 (12) C12—C13—H13A 120.1
C1—N1—C8 119.7 (2) C14—C13—H13A 120.1
C1—N1—H1A 120.1 C9—C14—C13 121.2 (3)
C8—N1—H1A 120.1 C9—C14—H14A 119.4
O1—C1—N1 121.6 (3) C13—C14—H14A 119.4
O1—C1—C2 120.7 (3) O3—C15—C16 106.6 (3)
N1—C1—C2 117.7 (3) O3—C15—C17 108.8 (3)
C3—C2—C7 118.6 (3) C16—C15—C17 113.3 (3)
C3—C2—C1 117.3 (3) O3—C15—H15A 109.4
C7—C2—C1 124.1 (3) C16—C15—H15A 109.4
C15—O3—P1 126.33 (19) C17—C15—H15A 109.4
C2—C3—C4 120.6 (3) C15—C16—H16A 109.5
C2—C3—H3A 119.7 C15—C16—H16B 109.5
C4—C3—H3A 119.7 H16A—C16—H16B 109.5
C18—O4—P1 123.20 (19) C15—C16—H16C 109.5
C5—C4—C3 120.0 (3) H16A—C16—H16C 109.5
C5—C4—H4A 120.0 H16B—C16—H16C 109.5
C3—C4—H4A 120.0 C15—C17—H17A 109.5
C6—C5—C4 120.1 (3) C15—C17—H17B 109.5
C6—C5—H5A 119.9 H17A—C17—H17B 109.5
C4—C5—H5A 119.9 C15—C17—H17C 109.5
C5—C6—C7 119.7 (3) H17A—C17—H17C 109.5
C5—C6—H6A 120.2 H17B—C17—H17C 109.5
C7—C6—H6A 120.2 O4—C18—C20 106.7 (3)
C2—C7—C6 121.0 (3) O4—C18—C19 110.1 (3)
C2—C7—H7A 119.5 C20—C18—C19 113.7 (4)
C6—C7—H7A 119.5 O4—C18—H18A 108.7
N1—C8—C9 112.6 (2) C20—C18—H18A 108.7
N1—C8—P1 112.04 (18) C19—C18—H18A 108.7
C9—C8—P1 113.18 (19) C18—C19—H19A 109.5
N1—C8—H8A 106.1 C18—C19—H19B 109.5
C9—C8—H8A 106.1 H19A—C19—H19B 109.5
P1—C8—H8A 106.1 C18—C19—H19C 109.5
C14—C9—C10 118.1 (3) H19A—C19—H19C 109.5
C14—C9—C8 120.7 (3) H19B—C19—H19C 109.5
C10—C9—C8 121.0 (2) C18—C20—H20A 109.5
C11—C10—C9 120.5 (3) C18—C20—H20B 109.5
C11—C10—H10A 119.7 H20A—C20—H20B 109.5
C9—C10—H10A 119.7 C18—C20—H20C 109.5
C12—C11—C10 120.5 (3) H20A—C20—H20C 109.5
C12—C11—H11A 119.7 H20B—C20—H20C 109.5
C8—N1—C1—O1 −3.5 (4) O2—P1—C8—N1 82.0 (2)
C8—N1—C1—C2 175.2 (2) O3—P1—C8—N1 −40.9 (2)
O1—C1—C2—C3 6.2 (4) O4—P1—C8—N1 −153.99 (19)
N1—C1—C2—C3 −172.5 (3) O2—P1—C8—C9 −46.6 (2)
O1—C1—C2—C7 −174.3 (3) O3—P1—C8—C9 −169.52 (19)
N1—C1—C2—C7 7.0 (4) O4—P1—C8—C9 77.4 (2)
O2—P1—O3—C15 −173.2 (2) N1—C8—C9—C14 116.7 (3)
O4—P1—O3—C15 61.0 (3) P1—C8—C9—C14 −115.0 (3)
C8—P1—O3—C15 −45.8 (3) N1—C8—C9—C10 −58.9 (4)
C7—C2—C3—C4 −2.5 (5) P1—C8—C9—C10 69.4 (3)
C1—C2—C3—C4 177.0 (3) C14—C9—C10—C11 −0.7 (5)
O2—P1—O4—C18 −19.8 (3) C8—C9—C10—C11 174.9 (3)
O3—P1—O4—C18 102.8 (2) C9—C10—C11—C12 1.0 (5)
C8—P1—O4—C18 −145.1 (2) C10—C11—C12—C13 −0.4 (6)
C2—C3—C4—C5 1.4 (6) C11—C12—C13—C14 −0.5 (6)
C3—C4—C5—C6 0.3 (6) C10—C9—C14—C13 −0.2 (5)
C4—C5—C6—C7 −0.8 (5) C8—C9—C14—C13 −175.8 (3)
C3—C2—C7—C6 2.0 (5) C12—C13—C14—C9 0.8 (5)
C1—C2—C7—C6 −177.4 (3) P1—O3—C15—C16 136.8 (3)
C5—C6—C7—C2 −0.4 (6) P1—O3—C15—C17 −100.8 (3)
C1—N1—C8—C9 −101.9 (3) P1—O4—C18—C20 156.8 (3)
C1—N1—C8—P1 129.2 (2) P1—O4—C18—C19 −79.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.05 2.895 (3) 165

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2235).

References

  1. Babak, K. & Rahman, N. (2001). Synth. Commun.31, 2245–2250.
  2. Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, R., Liu, L. & Zhang, Z. (1995). Heteroatom. Chem.6, 503–506.
  4. Drescher, M., Hammerschmidt, F. & Kählig, H. (1995). Synthesis, 10, 1267–1272.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smaardijk, Ab. A., Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett.26, 493–496.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stowasser, B., Budt, K.-H., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett.33, 6625–6628.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006382/fl2235sup1.cif

e-65-0o642-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006382/fl2235Isup2.hkl

e-65-0o642-Isup2.hkl (167.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES