Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 4;65(Pt 3):o458. doi: 10.1107/S1600536809003651

4-[2-(4-Fluoro­phen­yl)furan-3-yl]pyridine

Bassam Abu Thaher a, Pierre Koch b, Dieter Schollmeyer c, Stefan Laufer b,*
PMCID: PMC2968695  PMID: 21582130

Abstract

In the crystal structure of the title compound, C15H10FNO, the furan ring makes dihedral angles of 40.04 (11) and 25.71 (11)° with the pyridine and 4-fluoro­phenyl rings, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° with the 4-fluoro­phenyl ring. Non-conventional C—H⋯F and C—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For the biological activities of related compounds, see: Wilkerson et al. (1985); Myers et al. (1985).graphic file with name e-65-0o458-scheme1.jpg

Experimental

Crystal data

  • C15H10FNO

  • M r = 239.24

  • Monoclinic, Inline graphic

  • a = 13.343 (9) Å

  • b = 10.550 (3) Å

  • c = 8.178 (5) Å

  • β = 94.44 (3)°

  • V = 1147.7 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 193 (2) K

  • 0.26 × 0.19 × 0.12 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2172 measured reflections

  • 2172 independent reflections

  • 1806 reflections with I > 2σ(I)

  • 3 standard reflectionsfrequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.151

  • S = 1.07

  • 2172 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003651/bt2859sup1.cif

e-65-0o458-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003651/bt2859Isup2.hkl

e-65-0o458-Isup2.hkl (106.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F1i 0.95 2.32 3.006 (3) 128
C8—H8⋯N15ii 0.95 2.60 3.483 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Alexander von Humbolt Foundation (AvH) for funding.

supplementary crystallographic information

Comment

Diarylfuran carbinols and methanamines (Wilkerson et al. 1985) and diaryl-thio-substituted furans (Myers et al. 1985) have been considered to be potential anti-inflammatory or analgetic agents.

The analysis of the crystal structure of the title compound is shown in Fig. 1. The furan ring makes dihedral angles of 40.04 (11)° and 25.71 (11)° to the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° to the 4-fluorophenyl ring. Non-conventional C—H···X H-bonds seem to be effective in stabilization of the crystal structure. By intermolecular hydrogen bonds C5—H5···F1 (2.32 Å) and C8—H8···N15 (2.60 Å) a two-dimensional network parallel to the ab plane (Fig. 2) is formed.

Experimental

4-(4-Fluorophenyl)-4-oxo-3-(pyridin-4-yl)butanal (2.0 g) was treated with glacial acetic acid (10 ml), conc. HCl (30 ml) and then heated to reflux temperature for 4 h. The reaction mixture was cooled to r.t. and put into ice. A solution of K2CO3 was added until it became basic. The aqueous phase was extracted four times with ethyl acetate and the combined organic layers were dried over Na2SO4 and filtered. The remaining solution was concentrated in vacuo and then purified by flash chromatography (SiO2, petroleum ether/ethylacetate 2:1 to 1:1) to give compound I (1.15 g) as a pale yellow solid. For X-ray suitable crystals of compound I were obtained by slow evaporation at 298 K of a solution of n-hexane–ethyl acetate–diethyl ether.

Refinement

H atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å. They were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Fig. 2.

Fig. 2.

Partial crystal packing diagram of the title compound. The hydrogen bonds are shown with dashed lines. View along the c axis.

Crystal data

C15H10FNO F(000) = 496
Mr = 239.24 Dx = 1.385 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 13.343 (9) Å θ = 35–47°
b = 10.550 (3) Å µ = 0.81 mm1
c = 8.178 (5) Å T = 193 K
β = 94.44 (3)° Plate, colourless
V = 1147.7 (11) Å3 0.26 × 0.19 × 0.12 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.0000
Radiation source: rotating anode θmax = 70.1°, θmin = 3.3°
graphite h = 0→16
ω/2θ scans k = 0→12
2172 measured reflections l = −9→9
2172 independent reflections 3 standard reflections every 60 min
1806 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.084P)2 + 0.3989P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2172 reflections Δρmax = 0.23 e Å3
164 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0023 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.12844 (11) 0.65865 (12) 0.4490 (2) 0.0657 (5)
O1 0.10747 (10) 0.06648 (13) 0.45018 (19) 0.0394 (4)
C2 0.19141 (14) 0.13786 (18) 0.4958 (2) 0.0324 (4)
C3 0.26801 (14) 0.05896 (18) 0.5490 (2) 0.0338 (5)
C4 0.22829 (15) −0.06710 (19) 0.5367 (3) 0.0403 (5)
H4 0.2633 −0.1432 0.5656 0.048*
C5 0.13306 (16) −0.0573 (2) 0.4771 (3) 0.0438 (5)
H5 0.0889 −0.1270 0.4561 0.053*
C6 0.17617 (13) 0.27453 (18) 0.4833 (2) 0.0315 (4)
C7 0.23331 (14) 0.35897 (19) 0.5837 (2) 0.0353 (5)
H7 0.2837 0.3267 0.6610 0.042*
C8 0.21809 (15) 0.4885 (2) 0.5730 (3) 0.0409 (5)
H8 0.2577 0.5455 0.6408 0.049*
C9 0.14411 (17) 0.53215 (19) 0.4616 (3) 0.0422 (5)
C10 0.08431 (16) 0.4532 (2) 0.3621 (3) 0.0421 (5)
H10 0.0329 0.4868 0.2876 0.051*
C11 0.10057 (15) 0.32439 (19) 0.3728 (3) 0.0364 (5)
H11 0.0601 0.2686 0.3046 0.044*
C12 0.37309 (14) 0.08896 (18) 0.6061 (2) 0.0323 (4)
C13 0.42007 (15) 0.0206 (2) 0.7362 (3) 0.0395 (5)
H13 0.3841 −0.0426 0.7902 0.047*
C14 0.51936 (16) 0.0457 (2) 0.7858 (3) 0.0425 (5)
H14 0.5500 −0.0029 0.8739 0.051*
N15 0.57492 (13) 0.13313 (18) 0.7186 (2) 0.0411 (5)
C16 0.52945 (15) 0.1975 (2) 0.5926 (3) 0.0389 (5)
H16 0.5676 0.2595 0.5405 0.047*
C17 0.43063 (15) 0.17936 (19) 0.5335 (3) 0.0356 (5)
H17 0.4024 0.2284 0.4439 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0692 (10) 0.0266 (7) 0.0986 (13) 0.0065 (6) −0.0102 (8) 0.0003 (7)
O1 0.0293 (7) 0.0296 (7) 0.0575 (9) −0.0026 (5) −0.0079 (6) −0.0016 (6)
C2 0.0274 (9) 0.0303 (10) 0.0383 (11) −0.0035 (7) −0.0038 (7) −0.0019 (8)
C3 0.0310 (10) 0.0287 (10) 0.0406 (11) 0.0007 (8) −0.0030 (8) −0.0003 (8)
C4 0.0357 (11) 0.0289 (10) 0.0554 (13) 0.0023 (8) −0.0017 (9) 0.0011 (9)
C5 0.0375 (11) 0.0253 (10) 0.0679 (15) −0.0024 (8) −0.0004 (10) −0.0030 (9)
C6 0.0277 (9) 0.0306 (10) 0.0355 (10) 0.0014 (7) −0.0019 (7) −0.0001 (8)
C7 0.0308 (10) 0.0344 (11) 0.0392 (11) 0.0012 (8) −0.0072 (8) −0.0023 (8)
C8 0.0348 (11) 0.0337 (11) 0.0532 (13) −0.0034 (8) −0.0034 (9) −0.0081 (9)
C9 0.0418 (12) 0.0264 (10) 0.0581 (14) 0.0035 (8) 0.0018 (9) 0.0009 (9)
C10 0.0396 (11) 0.0383 (12) 0.0467 (12) 0.0074 (9) −0.0085 (9) 0.0033 (9)
C11 0.0327 (10) 0.0341 (10) 0.0410 (11) 0.0004 (8) −0.0073 (8) −0.0023 (8)
C12 0.0296 (10) 0.0293 (10) 0.0371 (10) 0.0037 (7) −0.0035 (7) −0.0040 (8)
C13 0.0373 (11) 0.0366 (11) 0.0438 (12) 0.0038 (8) −0.0023 (9) 0.0042 (9)
C14 0.0389 (12) 0.0474 (12) 0.0396 (11) 0.0108 (9) −0.0073 (9) 0.0016 (9)
N15 0.0345 (9) 0.0451 (11) 0.0420 (10) 0.0036 (7) −0.0070 (7) −0.0049 (8)
C16 0.0335 (10) 0.0380 (11) 0.0444 (11) −0.0027 (8) −0.0023 (8) −0.0028 (9)
C17 0.0334 (10) 0.0341 (10) 0.0379 (10) 0.0011 (8) −0.0071 (8) 0.0017 (8)

Geometric parameters (Å, °)

F1—C9 1.354 (2) C8—H8 0.9500
O1—C5 1.363 (2) C9—C10 1.375 (3)
O1—C2 1.377 (2) C10—C11 1.378 (3)
C2—C3 1.363 (3) C10—H10 0.9500
C2—C6 1.459 (3) C11—H11 0.9500
C3—C4 1.432 (3) C12—C17 1.387 (3)
C3—C12 1.478 (3) C12—C13 1.393 (3)
C4—C5 1.329 (3) C13—C14 1.381 (3)
C4—H4 0.9500 C13—H13 0.9500
C5—H5 0.9500 C14—N15 1.329 (3)
C6—C7 1.397 (3) C14—H14 0.9500
C6—C11 1.403 (3) N15—C16 1.339 (3)
C7—C8 1.384 (3) C16—C17 1.382 (3)
C7—H7 0.9500 C16—H16 0.9500
C8—C9 1.370 (3) C17—H17 0.9500
C5—O1—C2 106.97 (16) C8—C9—C10 123.0 (2)
C3—C2—O1 109.06 (17) C9—C10—C11 118.58 (19)
C3—C2—C6 136.31 (18) C9—C10—H10 120.7
O1—C2—C6 114.55 (16) C11—C10—H10 120.7
C2—C3—C4 106.28 (17) C10—C11—C6 120.82 (19)
C2—C3—C12 129.79 (18) C10—C11—H11 119.6
C4—C3—C12 123.92 (18) C6—C11—H11 119.6
C5—C4—C3 106.96 (18) C17—C12—C13 116.85 (18)
C5—C4—H4 126.5 C17—C12—C3 123.72 (18)
C3—C4—H4 126.5 C13—C12—C3 119.38 (18)
C4—C5—O1 110.72 (18) C14—C13—C12 119.4 (2)
C4—C5—H5 124.6 C14—C13—H13 120.3
O1—C5—H5 124.6 C12—C13—H13 120.3
C7—C6—C11 118.14 (18) N15—C14—C13 124.34 (19)
C7—C6—C2 121.48 (17) N15—C14—H14 117.8
C11—C6—C2 120.34 (17) C13—C14—H14 117.8
C8—C7—C6 121.47 (18) C14—N15—C16 115.86 (18)
C8—C7—H7 119.3 N15—C16—C17 124.2 (2)
C6—C7—H7 119.3 N15—C16—H16 117.9
C9—C8—C7 117.94 (19) C17—C16—H16 117.9
C9—C8—H8 121.0 C16—C17—C12 119.35 (19)
C7—C8—H8 121.0 C16—C17—H17 120.3
F1—C9—C8 118.7 (2) C12—C17—H17 120.3
F1—C9—C10 118.2 (2)
C5—O1—C2—C3 0.5 (2) C7—C8—C9—C10 0.7 (4)
C5—O1—C2—C6 −176.93 (18) F1—C9—C10—C11 179.2 (2)
O1—C2—C3—C4 −0.6 (2) C8—C9—C10—C11 −1.2 (4)
C6—C2—C3—C4 176.0 (2) C9—C10—C11—C6 0.3 (3)
O1—C2—C3—C12 178.1 (2) C7—C6—C11—C10 1.0 (3)
C6—C2—C3—C12 −5.3 (4) C2—C6—C11—C10 178.8 (2)
C2—C3—C4—C5 0.5 (3) C2—C3—C12—C17 −40.6 (3)
C12—C3—C4—C5 −178.3 (2) C4—C3—C12—C17 138.0 (2)
C3—C4—C5—O1 −0.3 (3) C2—C3—C12—C13 142.0 (2)
C2—O1—C5—C4 −0.1 (3) C4—C3—C12—C13 −39.4 (3)
C3—C2—C6—C7 −24.2 (4) C17—C12—C13—C14 0.1 (3)
O1—C2—C6—C7 152.23 (18) C3—C12—C13—C14 177.75 (19)
C3—C2—C6—C11 158.1 (2) C12—C13—C14—N15 0.8 (3)
O1—C2—C6—C11 −25.5 (3) C13—C14—N15—C16 −1.4 (3)
C11—C6—C7—C8 −1.5 (3) C14—N15—C16—C17 1.2 (3)
C2—C6—C7—C8 −179.28 (19) N15—C16—C17—C12 −0.4 (3)
C6—C7—C8—C9 0.7 (3) C13—C12—C17—C16 −0.3 (3)
C7—C8—C9—F1 −179.7 (2) C3—C12—C17—C16 −177.80 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···F1i 0.95 2.32 3.006 (3) 128
C8—H8···N15ii 0.95 2.60 3.483 (3) 155

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2859).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Myers, M. J., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 223–224.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Wilkerson, W. W., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 220–222.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003651/bt2859sup1.cif

e-65-0o458-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003651/bt2859Isup2.hkl

e-65-0o458-Isup2.hkl (106.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES