Abstract
To examine angiotensin (ANG) concentrations in fluid compartments near known intrarenal ANG receptors, we measured ANG concentrations in glomerular filtrate (GF), star vessel plasma (SVP), and luminal fluid from the early, mid, and late proximal tubule (E, M, and L PT). Samples were collected from euvolemic Munich-Wistar rats by free-flow micropuncture; ANG concentrations were measured by RIA. In one group of rats, concentrations of total immunoreactive ANG (reflecting ANG II and lesser amounts of three fragments) in GF and E, M, and L PT fluid averaged 29-40 nM compared with 32 pM in systemic plasma. In a second group, immunoreactive ANG concentrations in SVP also exceeded systemic levels by a factor of 1,000. In a final group, samples of GF and LPT fluid were purified by HPLC before RIA to measure ANG II and III concentrations specifically: their respective concentrations were 6-8 nM and 14-25 nM. We interpret these results to indicate that substantial amounts of ANG peptides are released into or generated within intrarenal fluid compartments, in which local ANG is likely to effect regulation of renal function independently of systemic ANG.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailie M. D., Rector F. C., Jr, Seldin D. W. Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest. 1971 Jan;50(1):119–126. doi: 10.1172/JCI106465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellucci A., Wilkes B. M. Mechanism of sodium modulation of glomerular angiotensin receptors in the rat. J Clin Invest. 1984 Nov;74(5):1593–1600. doi: 10.1172/JCI111575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biron P., Meyer P., Panisset J. C. Removal of angiotensins from the systemic circulation. Can J Physiol Pharmacol. 1968 Mar;46(2):175–178. doi: 10.1139/y68-029. [DOI] [PubMed] [Google Scholar]
- Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. P., Douglas J. G. Angiotensin II binding sites on isolated rat renal brush border membranes. Endocrinology. 1982 Dec;111(6):1830–1836. doi: 10.1210/endo-111-6-1830. [DOI] [PubMed] [Google Scholar]
- Campbell D. J. Circulating and tissue angiotensin systems. J Clin Invest. 1987 Jan;79(1):1–6. doi: 10.1172/JCI112768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carone F. A., Peterson D. R. Hydrolysis and transport of small peptides by the proximal tubule. Am J Physiol. 1980 Mar;238(3):F151–F158. doi: 10.1152/ajprenal.1980.238.3.F151. [DOI] [PubMed] [Google Scholar]
- Chou S. Y., Faubert P. F., Porush J. G. Contribution of angiotensin to the control of medullary hemodynamics. Fed Proc. 1986 Apr;45(5):1438–1443. [PubMed] [Google Scholar]
- Deschepper C. F., Mellon S. H., Cumin F., Baxter J. D., Ganong W. F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7552–7556. doi: 10.1073/pnas.83.19.7552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas J. G. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol. 1987 Jul;253(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. [DOI] [PubMed] [Google Scholar]
- Dzau V. J. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987 Jan 23;59(2):59A–65A. doi: 10.1016/0002-9149(87)90178-0. [DOI] [PubMed] [Google Scholar]
- Harris P. J., Navar L. G. Tubular transport responses to angiotensin. Am J Physiol. 1985 May;248(5 Pt 2):F621–F630. doi: 10.1152/ajprenal.1985.248.5.F621. [DOI] [PubMed] [Google Scholar]
- Harris P. J., Young J. A. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 1977 Jan 17;367(3):295–297. doi: 10.1007/BF00581370. [DOI] [PubMed] [Google Scholar]
- Ichikawa I., Miele J. F., Brenner B. M. Reversal of renal cortical actions of angiotensin II by verapamil and manganese. Kidney Int. 1979 Aug;16(2):137–147. doi: 10.1038/ki.1979.115. [DOI] [PubMed] [Google Scholar]
- Ingelfinger J. R., Zuo W. M., Fon E. A., Ellison K. E., Dzau V. J. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990 Feb;85(2):417–423. doi: 10.1172/JCI114454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leary W. P., Ledingham J. G. Removal of angiotensin by isolated perfused organs of the rat. Nature. 1969 Jun 7;222(5197):959–960. doi: 10.1038/222959a0. [DOI] [PubMed] [Google Scholar]
- Lindop G. B., Lever A. F. Anatomy of the renin-angiotensin system in the normal and pathological kidney. Histopathology. 1986 Apr;10(4):335–362. doi: 10.1111/j.1365-2559.1986.tb02489.x. [DOI] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelsohn F. A., Dunbar M., Allen A., Chou S. T., Millan M. A., Aguilera G., Catt K. J. Angiotensin II receptors in the kidney. Fed Proc. 1986 Apr;45(5):1420–1425. [PubMed] [Google Scholar]
- Mendelsohn F. A. Evidence for the local occurrence of angiotensin II in rat kidney and its modulation by dietary sodium intake and converting enzyme blockade. Clin Sci (Lond) 1979 Aug;57(2):173–179. doi: 10.1042/cs0570173. [DOI] [PubMed] [Google Scholar]
- Mené P., Simonson M. S., Dunn M. J. Physiology of the mesangial cell. Physiol Rev. 1989 Oct;69(4):1347–1424. doi: 10.1152/physrev.1989.69.4.1347. [DOI] [PubMed] [Google Scholar]
- Mujais S. K., Kauffman S., Katz A. I. Angiotensin II binding sites in individual segments of the rat nephron. J Clin Invest. 1986 Jan;77(1):315–318. doi: 10.1172/JCI112293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers B. D., Deen W. M., Brenner B. M. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res. 1975 Jul;37(1):101–110. doi: 10.1161/01.res.37.1.101. [DOI] [PubMed] [Google Scholar]
- Naden R. P., Coultrup S., Arant B. S., Rosenfeld C. R. Metabolic clearance of angiotensin II in pregnant and nonpregnant sheep. Am J Physiol. 1985 Jul;249(1 Pt 1):E49–E55. doi: 10.1152/ajpendo.1985.249.1.E49. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Nakajima T., Sokabe H. Comparative studies on angiotensins. II. Structure of rat angiotensin and its identification by DNS-method. Chem Pharm Bull (Tokyo) 1972 Jul;20(7):1579–1581. doi: 10.1248/cpb.20.1579. [DOI] [PubMed] [Google Scholar]
- Navar L. G., Rosivall L., Carmines P. K., Oparil S. Effects of locally formed angiotensin II on renal hemodynamics. Fed Proc. 1986 Apr;45(5):1448–1453. [PubMed] [Google Scholar]
- Oparil S., Bailie M. D. Mechanism of renal handling of angiotensin II in the dog. Circ Res. 1973 Nov;33(5):500–507. doi: 10.1161/01.res.33.5.500. [DOI] [PubMed] [Google Scholar]
- Proud D., Nakamura S., Carone F. A., Herring P. L., Kawamura M., Inagami T., Pisano J. J. Kallikrein-kinin and renin-angiotensin systems in rat renal lymph. Kidney Int. 1984 Jun;25(6):880–885. doi: 10.1038/ki.1984.105. [DOI] [PubMed] [Google Scholar]
- Richoux J. P., Cordonnier J. L., Bouhnik J., Clauser E., Corvol P., Menard J., Grignon G. Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res. 1983;233(2):439–451. doi: 10.1007/BF00238309. [DOI] [PubMed] [Google Scholar]
- Rix E., Ganten D., Schüll B., Unger T., Taugner R. Converting-enzyme in the choroid plexus, brain, and kidney: immunocytochemical and biochemical studies in rats. Neurosci Lett. 1981 Mar 10;22(2):125–130. doi: 10.1016/0304-3940(81)90075-6. [DOI] [PubMed] [Google Scholar]
- Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taugner R., Ganten D. The localization of converting enzyme in kidney vessels of the rat. Histochemistry. 1982;75(2):191–201. doi: 10.1007/BF00496010. [DOI] [PubMed] [Google Scholar]
- Ward P. E., Erdös E. G., Gedney C. D., Dowben R. M., Reynolds R. C. Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem J. 1976 Sep 1;157(3):643–650. doi: 10.1042/bj1570643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright F. S., Briggs J. P. Feedback control of glomerular blood flow, pressure, and filtration rate. Physiol Rev. 1979 Oct;59(4):958–1006. doi: 10.1152/physrev.1979.59.4.958. [DOI] [PubMed] [Google Scholar]