Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o664–o665. doi: 10.1107/S1600536809007077

Hydrogen bonding in 2-carboxy­anilinium dihydrogen phosphite at 100 K

Nourredine Benali-Cherif a,*, Fatima Allouche a, Amani Direm a, Kawther Soudani a
PMCID: PMC2968775  PMID: 21582409

Abstract

The title compound, C7H8NO2 +·H2PO3 , is formed from alternating layers of organic cations and inorganic anions stacked along the a-axis direction. They are associated via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonding, giving rise to two different R 2 2(8) graph-set motifs and generating a three-dimensional network.

Related literature

For applications of hybrid compounds, see: Kagan et al. (1999); Mazeaud et al. (2000); Benali-Cherif, Direm et al. (2007). For applications of anthranilic acid derivatives, see: He et al. (2003); Per Wiklund et al. (2004); Congiu et al. (2005); Nittoli et al. (2005). For related structured, see: Bendeif et al. (2003, 2009); Benali-Cherif, Allouche et al. (2007). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-65-0o664-scheme1.jpg

Experimental

Crystal data

  • C7H8NO2 +·H2PO3

  • M r = 219.13

  • Triclinic, Inline graphic

  • a = 4.8757 (6) Å

  • b = 9.4597 (6) Å

  • c = 10.0801 (5) Å

  • α = 78.929 (3)°

  • β = 76.058 (4)°

  • γ = 86.814 (2)°

  • V = 442.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Saphire2 diffractometer

  • Absorption correction: integration (ABSORB; DeTitta, 1985) T min = 0.972, T max = 0.985

  • 11058 measured reflections

  • 2581 independent reflections

  • 2559 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.093

  • S = 1.07

  • 2581 reflections

  • 127 parameters

  • H-atom parameters not refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007077/bg2238sup1.cif

e-65-0o664-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007077/bg2238Isup2.hkl

e-65-0o664-Isup2.hkl (124.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.77 2.6085 (13) 178
N1—H1A⋯O4 0.91 1.96 2.8589 (14) 169
N1—H1B⋯O4ii 0.91 2.02 2.9160 (13) 169
N1—H1C⋯O4iii 0.91 1.97 2.8740 (14) 173
O5—H5O⋯O3iv 0.84 1.78 2.6059 (13) 167
C6—H6⋯O5v 0.95 2.55 3.2542 (15) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We wish to thank Dr C. Lecomte of LCM3B (UMR UHP –CNRS 7036), Faculté des Sciences et Techniques 54506 Vandoeuvre-lès-Nancy CEDEX, for providing diffraction facilities in his laboratory, and le Centre Universitaire de Khenchela for financial support.

supplementary crystallographic information

Comment

The crystal structures of organic-inorganic hybrid materials have been extensively investigated due to their interest in the field of new materials, and the number of reported structures is rapidly growing owing to their applications in medicine, material science and to their electrical, magnetic and optical properties (Kagan et al., 1999; Mazeaud et al., 2000) and the hydrogen bonding richness of these structures. This kind of hydrogen bonding appears in the active sites of several biological systems and is observed in similar previously studied hybrid compounds (Benali-Cherif, Direm et al., 2007).

As well as being a biochemical precursor of the amino acids tryptophan, phenylalanine and tyrosine, anthranilic acid is used as a useful derivating agent for carbohydrate analysis (He et al., 2003). 2-Aminobenzoic acid is present as a part of the core structure of certain alkaloids, synthetic drugs (Per Wiklund et al., 2004), antiinflammatory, anticancer agents (Congiu et al., 2005) and as inhibitor of Hepatitis C NS5B polymerase (Nittoli et al., 2005).

The title compound structure (I) is composed of cationic HOO-C6H4—NH3+ and anionic (H2PO3-) groups (Fig.1). All bond lengths and angles of the (H2PO3-) tetrahedra and the o-carboxyanilinium cations are within normal ranges, in a good agreement with those observed in the litterature (Bendeif et al. 2003, Bendeif et al. 2009) and (Benali-Cherif, Allouche et al., 2007), respectively.

The three H atoms of the anilinium group are subsequently involved in extensive N—H···O hydrogen-bonding (Table 1) interactions with O4 being a multiple acceptor of three different phosphite anions, while O3 behaves as double acceptor of hydrogen bonds from one cation, via O1 in the carboxylic group, and one anion, via O5 in the phosphite anion. These interactions give raise to two different R22(8) graph set motifs (Bernstein et al. 1995), shown in Fig. 2. In addition, there are intramolecular interactions involving the benzene ring and the carboxylic group ensuring cohesion and stability of the crystal structiure.

Experimental

Crystals of anthranilicium phosphite are prepared by slow evaporation at room temperature of an aqueous solution of 2-aminobenzoic acid and H3PO3 in a 1:1 stochiometric ratio.

Refinement

The title compound crystallizes in the centrosymmetric space group P-1. A l l non-H atoms were refined with anisotropic atomic displacement parameters. All H-atoms were located in difference Fourier syntheses and refined as riding model with C—H, N—H, O—H bond lengths constrained to 0.950 Å, 0.910 Å, 0.840Å respectively.

Figures

Fig. 1.

Fig. 1.

View of the asymmetric unit of C7H8NO2+.H2PO3- showing atom labels and suggesting the hydrogen bondings richness. Displacement factors drawn at a 50% level.

Fig. 2.

Fig. 2.

Unit cell projection down a, showing the two different R22(8) graph motifs in the structure.

Crystal data

C7H8NO2+·H2PO3 Z = 2
Mr = 219.13 F(000) = 228
Triclinic, P1 Dx = 1.643 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.8757 (6) Å Cell parameters from 11058 reflections
b = 9.4597 (6) Å θ = 2.8–32.7°
c = 10.0801 (5) Å µ = 0.31 mm1
α = 78.929 (3)° T = 100 K
β = 76.058 (4)° Prism, colourless
γ = 86.814 (2)° 0.25 × 0.18 × 0.05 mm
V = 442.81 (7) Å3

Data collection

Oxford Diffraction Xcalibur Saphire2 diffractometer 2581 independent reflections
Radiation source: fine-focus sealed tube 2559 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 8.4221 pixels mm-1 θmax = 30.0°, θmin = 2.8°
ω and θ scans h = −6→6
Absorption correction: integration (ABSORB; DeTitta, 1985) k = −12→13
Tmin = 0.972, Tmax = 0.985 l = 0→14
11058 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: difference Fourier map
wR(F2) = 0.093 H-atom parameters not refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2002P] where P = (Fo2 + 2Fc2)/3
2581 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.22190 (19) 0.11913 (10) 0.23669 (10) 0.01503 (19)
H1 1.3765 0.1163 0.1783 0.023*
O2 1.18445 (19) 0.33344 (10) 0.10200 (9) 0.01319 (18)
N1 0.6956 (2) 0.48161 (11) 0.14593 (10) 0.0107 (2)
H1A 0.5423 0.5400 0.1407 0.013*
H1B 0.7309 0.4308 0.0754 0.013*
H1C 0.8484 0.5361 0.1386 0.013*
C1 1.0902 (2) 0.24260 (13) 0.20403 (12) 0.0109 (2)
C2 0.8201 (2) 0.26393 (13) 0.30600 (12) 0.0106 (2)
C3 0.6396 (3) 0.38167 (13) 0.27952 (12) 0.0104 (2)
C4 0.3987 (3) 0.40572 (13) 0.37899 (13) 0.0131 (2)
H4 0.2794 0.4862 0.3601 0.016*
C5 0.3322 (3) 0.31144 (14) 0.50686 (13) 0.0150 (2)
H5 0.1688 0.3284 0.5755 0.018*
C6 0.5051 (3) 0.19272 (15) 0.53363 (13) 0.0157 (2)
H6 0.4584 0.1276 0.6199 0.019*
C7 0.7466 (3) 0.16969 (14) 0.43364 (13) 0.0141 (2)
H7 0.8639 0.0883 0.4525 0.017*
P1 0.19035 (6) 0.80587 (3) 0.08601 (3) 0.01016 (10)
O3 0.29056 (19) 0.88933 (10) −0.06075 (9) 0.01379 (18)
O4 0.20062 (18) 0.64347 (9) 0.10464 (9) 0.01255 (18)
O5 −0.1212 (2) 0.85119 (10) 0.14917 (10) 0.0166 (2)
H5O −0.1511 0.9363 0.1122 0.025*
H 0.3396 0.8447 0.1629 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0120 (4) 0.0112 (4) 0.0180 (4) 0.0041 (3) −0.0003 (3) 0.0013 (3)
O2 0.0124 (4) 0.0120 (4) 0.0132 (4) 0.0011 (3) −0.0016 (3) 0.0003 (3)
N1 0.0102 (5) 0.0093 (4) 0.0118 (5) 0.0016 (3) −0.0022 (3) −0.0011 (3)
C1 0.0102 (5) 0.0099 (5) 0.0131 (5) 0.0011 (4) −0.0039 (4) −0.0025 (4)
C2 0.0097 (5) 0.0101 (5) 0.0118 (5) 0.0003 (4) −0.0030 (4) −0.0013 (4)
C3 0.0117 (5) 0.0093 (5) 0.0101 (5) −0.0004 (4) −0.0031 (4) −0.0013 (4)
C4 0.0122 (5) 0.0128 (5) 0.0141 (5) 0.0013 (4) −0.0020 (4) −0.0036 (4)
C5 0.0134 (5) 0.0180 (6) 0.0128 (5) −0.0004 (4) −0.0006 (4) −0.0042 (4)
C6 0.0172 (6) 0.0175 (6) 0.0103 (5) −0.0013 (5) −0.0016 (4) 0.0014 (4)
C7 0.0137 (5) 0.0130 (6) 0.0142 (5) 0.0016 (4) −0.0036 (4) 0.0008 (4)
P1 0.01028 (15) 0.00778 (15) 0.01211 (15) 0.00126 (10) −0.00279 (11) −0.00126 (10)
O3 0.0124 (4) 0.0106 (4) 0.0148 (4) 0.0029 (3) 0.0006 (3) 0.0007 (3)
O4 0.0124 (4) 0.0082 (4) 0.0166 (4) 0.0013 (3) −0.0040 (3) −0.0009 (3)
O5 0.0149 (4) 0.0110 (4) 0.0181 (4) 0.0053 (3) 0.0026 (3) 0.0018 (3)

Geometric parameters (Å, °)

O1—C1 1.3250 (14) C4—H4 0.9500
O1—H1 0.8399 C5—C6 1.3902 (18)
O2—C1 1.2182 (15) C5—H5 0.9500
N1—C3 1.4643 (15) C6—C7 1.3908 (17)
N1—H1A 0.9100 C6—H6 0.9500
N1—H1B 0.9100 C7—H7 0.9500
N1—H1C 0.9101 P1—O4 1.5110 (9)
C1—C2 1.4930 (16) P1—O3 1.5154 (9)
C2—C7 1.3970 (16) P1—O5 1.5695 (9)
C2—C3 1.4060 (16) P1—H 1.2947
C3—C4 1.3880 (16) O5—H5O 0.8400
C4—C5 1.3969 (17)
C1—O1—H1 109.5 C5—C4—H4 120.1
C3—N1—H1A 109.5 C6—C5—C4 120.00 (11)
C3—N1—H1B 109.5 C6—C5—H5 120.0
H1A—N1—H1B 109.5 C4—C5—H5 120.0
C3—N1—H1C 109.5 C5—C6—C7 119.76 (12)
H1A—N1—H1C 109.5 C5—C6—H6 120.1
H1B—N1—H1C 109.5 C7—C6—H6 120.1
O2—C1—O1 123.21 (11) C6—C7—C2 121.25 (12)
O2—C1—C2 122.48 (11) C6—C7—H7 119.4
O1—C1—C2 114.27 (10) C2—C7—H7 119.4
C7—C2—C3 118.21 (11) O4—P1—O3 116.92 (5)
C7—C2—C1 120.31 (11) O4—P1—O5 107.62 (5)
C3—C2—C1 121.42 (11) O3—P1—O5 109.90 (5)
C4—C3—C2 120.87 (11) O4—P1—H 108.37
C4—C3—N1 117.68 (10) O3—P1—H 108.24
C2—C3—N1 121.44 (10) O5—P1—H 105.16
C3—C4—C5 119.89 (11) P1—O5—H5O 109.5
C3—C4—H4 120.1
O2—C1—C2—C7 −168.18 (12) C2—C3—C4—C5 −0.57 (19)
O1—C1—C2—C7 9.66 (16) N1—C3—C4—C5 178.45 (11)
O2—C1—C2—C3 9.07 (18) C3—C4—C5—C6 −0.83 (19)
O1—C1—C2—C3 −173.09 (11) C4—C5—C6—C7 1.1 (2)
C7—C2—C3—C4 1.67 (18) C5—C6—C7—C2 0.1 (2)
C1—C2—C3—C4 −175.63 (11) C3—C2—C7—C6 −1.42 (18)
C7—C2—C3—N1 −177.31 (11) C1—C2—C7—C6 175.92 (12)
C1—C2—C3—N1 5.39 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.84 1.77 2.6085 (13) 178
N1—H1A···O4 0.91 1.96 2.8589 (14) 169
N1—H1B···O4ii 0.91 2.02 2.9160 (13) 169
N1—H1C···O4iii 0.91 1.97 2.8740 (14) 173
O5—H5O···O3iv 0.84 1.78 2.6059 (13) 167
C6—H6···O5v 0.95 2.55 3.2542 (15) 132
C7—H7···O1 0.95 2.42 2.7503 (16) 101

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x, −y+2, −z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2238).

References

  1. Benali-Cherif, N., Direm, A., Allouche, F., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2054–o2056. [DOI] [PMC free article] [PubMed]
  2. Benali-Cherif, N., Direm, A., Allouche, F. & Soudani, K. (2007). Acta Cryst. E63, o2272–o2274. [DOI] [PMC free article] [PubMed]
  3. Bendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, o141–o142.
  4. Bendeif, E.-E., Lecomte, C. & Dahaoui, S. (2009). Acta Cryst. B65, 59–67. [DOI] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  7. Congiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem.48, 8245–8252. [DOI] [PubMed]
  8. DeTitta, G. T. (1985). J. Appl. Cryst.18, 75–79.
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  11. He, L., Sato, K., Abo, M., Okubo, A. & Yamazaki, S. (2003). Anal. Biochem.314, 128–134. [DOI] [PubMed]
  12. Kagan, C. R., Mitzi, D. B. C. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. [DOI] [PubMed]
  13. Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem.39, 4735–4740. [DOI] [PubMed]
  14. Nittoli, T., Curran, K., Insaf, S., DiGrandi, M., Orlowski, M., Chopra, R., Agarwal, A., Howe, A. Y. M., Prashad, A., Floyd, M. B., Johnson, B., Sutherland, A., Wheless, K., Feld, B., O’Connell, J., Mansour, T. S. & Bloom, J. (2005). J. Med. Chem 48, 7560–7581. [DOI] [PubMed]
  15. Nonius (1998). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Wiklund, P. & Bergman, J. (2004). Tetrahedron, 45, 969–972.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007077/bg2238sup1.cif

e-65-0o664-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007077/bg2238Isup2.hkl

e-65-0o664-Isup2.hkl (124.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES