Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):o740. doi: 10.1107/S1600536809007983

N-[(2-Hydr­oxy-1-naphth­yl)(2-hydroxy­phen­yl)meth­yl]acetamide

M NizamMohideen a, S Thenmozhi b, A SubbiahPandi b, N Panneer Selvam c, P T Perumal c,*
PMCID: PMC2968777  PMID: 21582473

Abstract

In the asymmetric unit of the title compound, C19H17NO3, there are two crystallographically independent mol­ecules, which are connected to each other by O—H⋯O hydrogen bonds, forming mol­ecular chains as well as cyclic centrosymmetric R 2 2(16) dimers.

Related literature

For background literature, see: Barker et al. (2008); Gade (2002); Linton & Hamilton (1997); Valeur & Leray (2000); Wabnitz & Spencer (2002). For related structures, see: Gowda et al. (2000, 2006, 2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Fun et al. (2008).graphic file with name e-65-0o740-scheme1.jpg

Experimental

Crystal data

  • C19H17NO3

  • M r = 307.34

  • Monoclinic, Inline graphic

  • a = 21.286 (5) Å

  • b = 17.9288 (4) Å

  • c = 19.524 (7) Å

  • β = 121.428 (1)°

  • V = 6358 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.980, T max = 0.986

  • 33278 measured reflections

  • 6464 independent reflections

  • 4384 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.146

  • S = 1.02

  • 6464 reflections

  • 417 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007983/pv2141sup1.cif

e-65-0o740-sup1.cif (29.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007983/pv2141Isup2.hkl

e-65-0o740-Isup2.hkl (310.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.99 2.792 (2) 166
O2A—H2A1⋯O3ii 0.82 1.89 2.702 (2) 170
O2—H2⋯O3Aiii 0.82 1.81 2.588 (2) 159
O1A—H1A1⋯O3A 0.82 2.16 2.928 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College, Chennai, India, for providing computer and internet facilities.

supplementary crystallographic information

Comment

β-Acetamido ketones serve as potential intermediates in the synthesis of natural products and antibiotics (Wabnitz & Spencer, 2002). Due to the nucleophilic nature of benzylic hydroxyl groups these are usually protected during multi-step organic synthesis (Barker et al., 2008). Amide moiety and their metal ion complexes are widely used for their properties and potential applications (Gade, 2002; Valeur & Leray, 2000; Linton & Hamilton, 1997). The amide linkage [–NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. The effect of substituents on the solid state structures of N-aromatic amides have been described in the literature (Gowda et al., 2000, 2006, 2007). As part of our investigations on acetamide derivatives, the title compound, (I), has been prepared and its crystal structure is presented here.

Figs. 1 and 2 show the molecular structures and conformations of the two crystallographically independent molecules, A (C1—C19, N1, O1, O2, O3) and B (C1A—C19A, N1A, O1A, O2A, O3A), in the asymmetric unit of (I), with the atomic numbering scheme. The bond lengths and angles in the two independent molecules agree with each other. The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature. The bond distances of C18 = O3 and C18A = O3A [1.245 (2) and 1.244 (2) Å] for the molecules A and B, respectively, which are typical for double bonds (Fun et al., 2008).

In the molecules A and B, benzene and naphthalene rings are individually planar as expected. The deviations of the atoms O2 and O2A from the least-squares plane of the naphthalene rings are -0.075 (1) and 0.164 (1) Å. The deviations of the atoms O1 and O1A from the least-squares plane of the benzene rings are 0.056 (1) and 0.021 (1) Å. The dihedral angles between the naphthalene ring system and benzene rings are 75.7 (1) and 82.9 (1)° for molecules A and B respectively, and those between the fused rings are 0.3 (1) and 2.8 (1) °.

The crystal packing is stabilized by strong O—H···O inter and intramolecular hydrogen bonds and each molecule has a week intramolecular C—H···O interaction (Table 1). Considering only A-type molecules, atom O1 acts as a donar in a strong intermolecular O—H···O interaction via H1 with acetamido atom O3 of a symmetry related molecule, generating centrosymmetric hydrogen bonded dimers with a cyclic R22(16) ring system (Bernstein et al., 1995) (Fig. 3). The interlinking of A and B molecules via strong O—H···O hydrogen bond generates infinite chains running along c axis. The atoms O3 and O3a act as a acceptors for all inter and intramolecular interactions.

Experimental

A mixture of 2-hydroxybenzaldehyde (10 mmol), β-naphthol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To the suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 6 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether (2 × 10 ml) and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol.

Refinement

All H atoms were positioned geometrically, with N—H = 0.86, O—H = 0.82 and C—H = 0.93, 0.98 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

One of the two independent molecules in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The other independent molecules in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the R22(16) rings. For the sake of clarity, H atoms not involved in the hydrogen bonding have been omitted for clarity. Hydrogen bonding is shown as dashed lines. [Symmetry codes: (*) -x, -y + 1, -z + 1]

Crystal data

C19H17NO3 F(000) = 2592
Mr = 307.34 Dx = 1.284 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6464 reflections
a = 21.286 (5) Å θ = 2.5–25°
b = 17.9288 (4) Å µ = 0.09 mm1
c = 19.524 (7) Å T = 293 K
β = 121.428 (1)° Prism, colourless
V = 6358 (3) Å3 0.20 × 0.16 × 0.16 mm
Z = 16

Data collection

Bruker Kappa APEXII CCD diffractometer 6464 independent reflections
Radiation source: fine-focus sealed tube 4384 reflections with I > 2σ(I)
graphite Rint = 0.034
ω and φ scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −26→26
Tmin = 0.980, Tmax = 0.986 k = −22→22
33278 measured reflections l = −24→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0747P)2 + 2.6626P] where P = (Fo2 + 2Fc2)/3
6464 reflections (Δ/σ)max = 0.005
417 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05068 (7) 0.50195 (8) 0.59220 (8) 0.0556 (4)
H1 0.0080 0.5100 0.5793 0.083*
O2 0.30227 (7) 0.59048 (8) 0.70861 (10) 0.0655 (4)
H2 0.3361 0.6207 0.7274 0.098*
O3 0.09894 (7) 0.46622 (7) 0.47788 (7) 0.0427 (3)
N1 0.17949 (8) 0.53425 (8) 0.58664 (9) 0.0413 (4)
H1A 0.2011 0.5768 0.6017 0.050*
C1 0.09638 (10) 0.51566 (10) 0.67223 (11) 0.0415 (4)
C2 0.07009 (11) 0.53887 (11) 0.72002 (13) 0.0531 (5)
H2A 0.0200 0.5475 0.6975 0.064*
C3 0.11779 (12) 0.54928 (13) 0.80092 (14) 0.0619 (6)
H3 0.1000 0.5648 0.8332 0.074*
C4 0.19150 (13) 0.53670 (14) 0.83396 (13) 0.0659 (6)
H4 0.2238 0.5436 0.8887 0.079*
C5 0.21785 (11) 0.51384 (12) 0.78609 (12) 0.0533 (5)
H5 0.2680 0.5051 0.8092 0.064*
C6 0.17118 (9) 0.50360 (10) 0.70431 (11) 0.0391 (4)
C7 0.19871 (9) 0.47856 (9) 0.65004 (10) 0.0376 (4)
H7 0.1727 0.4323 0.6237 0.045*
C8 0.28056 (9) 0.46165 (10) 0.69505 (11) 0.0399 (4)
C9 0.33020 (10) 0.52005 (11) 0.72284 (12) 0.0473 (5)
C10 0.40660 (11) 0.50776 (14) 0.76622 (13) 0.0600 (6)
H10 0.4390 0.5479 0.7834 0.072*
C11 0.43294 (11) 0.43680 (15) 0.78296 (13) 0.0641 (6)
H11 0.4836 0.4290 0.8120 0.077*
C12 0.38526 (12) 0.37479 (13) 0.75730 (12) 0.0552 (5)
C13 0.30753 (10) 0.38715 (11) 0.71243 (10) 0.0431 (4)
C14 0.26164 (12) 0.32330 (11) 0.68782 (12) 0.0531 (5)
H14 0.2108 0.3296 0.6590 0.064*
C15 0.28989 (16) 0.25316 (13) 0.70521 (14) 0.0739 (7)
H15 0.2584 0.2123 0.6876 0.089*
C16 0.36600 (18) 0.24206 (16) 0.74933 (16) 0.0850 (9)
H16 0.3850 0.1939 0.7615 0.102*
C17 0.41189 (15) 0.30083 (17) 0.77423 (14) 0.0747 (8)
H17 0.4624 0.2926 0.8033 0.090*
C18 0.13247 (10) 0.52537 (10) 0.50919 (11) 0.0398 (4)
C19 0.12036 (14) 0.59206 (12) 0.45734 (14) 0.0709 (7)
H19A 0.1426 0.5835 0.4261 0.106*
H19B 0.1422 0.6352 0.4906 0.106*
H19C 0.0685 0.6002 0.4221 0.106*
O1A −0.04220 (8) 0.82226 (9) 0.16047 (8) 0.0572 (4)
H1A1 0.0018 0.8190 0.1765 0.086*
O2A 0.05897 (8) 0.65781 (7) 0.02450 (8) 0.0532 (4)
H2A1 0.0688 0.6224 0.0051 0.080*
O3A 0.11589 (7) 0.79276 (7) 0.26185 (8) 0.0472 (3)
N1A 0.06323 (8) 0.72763 (8) 0.14574 (8) 0.0364 (3)
H1A2 0.0553 0.6835 0.1257 0.044*
C1A −0.08229 (10) 0.80834 (10) 0.08044 (12) 0.0444 (4)
C2A −0.15812 (11) 0.80967 (13) 0.03873 (14) 0.0591 (6)
H2A2 −0.1826 0.8196 0.0656 0.071*
C3A −0.19743 (13) 0.79645 (16) −0.04221 (16) 0.0768 (8)
H3A −0.2486 0.7973 −0.0700 0.092*
C4A −0.16199 (13) 0.78190 (18) −0.08270 (15) 0.0820 (8)
H4A −0.1888 0.7730 −0.1377 0.098*
C5A −0.08569 (12) 0.78056 (14) −0.04061 (12) 0.0613 (6)
H5A −0.0617 0.7708 −0.0680 0.074*
C6A −0.04459 (10) 0.79339 (10) 0.04089 (11) 0.0412 (4)
C7A 0.03910 (9) 0.79041 (9) 0.08923 (10) 0.0361 (4)
H7A 0.0562 0.8361 0.1214 0.043*
C8A 0.07419 (9) 0.78832 (9) 0.03854 (10) 0.0361 (4)
C9A 0.08438 (10) 0.72246 (10) 0.00967 (11) 0.0421 (4)
C10A 0.11902 (12) 0.72005 (12) −0.03502 (12) 0.0547 (5)
H10A 0.1268 0.6744 −0.0520 0.066*
C11A 0.14087 (12) 0.78344 (13) −0.05326 (12) 0.0573 (6)
H11A 0.1644 0.7810 −0.0821 0.069*
C12A 0.12871 (10) 0.85341 (11) −0.02947 (11) 0.0471 (5)
C13A 0.09502 (9) 0.85622 (10) 0.01715 (10) 0.0385 (4)
C14A 0.08239 (10) 0.92775 (10) 0.03835 (12) 0.0478 (5)
H14A 0.0605 0.9315 0.0689 0.057*
C15A 0.10157 (12) 0.99152 (12) 0.01502 (14) 0.0618 (6)
H15A 0.0927 1.0378 0.0299 0.074*
C16A 0.13439 (13) 0.98752 (14) −0.03111 (15) 0.0678 (7)
H16A 0.1471 1.0310 −0.0471 0.081*
C17A 0.14749 (12) 0.92046 (14) −0.05222 (13) 0.0609 (6)
H17A 0.1695 0.9183 −0.0826 0.073*
C18A 0.09592 (9) 0.73285 (9) 0.22438 (10) 0.0376 (4)
C19A 0.10774 (14) 0.66185 (12) 0.26910 (13) 0.0664 (6)
H19D 0.1576 0.6455 0.2912 0.100*
H19E 0.0746 0.6245 0.2332 0.100*
H19F 0.0986 0.6698 0.3118 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0317 (7) 0.0809 (10) 0.0451 (8) 0.0032 (6) 0.0138 (6) −0.0079 (7)
O2 0.0455 (8) 0.0528 (9) 0.0865 (11) −0.0171 (6) 0.0263 (8) −0.0101 (8)
O3 0.0459 (7) 0.0437 (7) 0.0373 (7) −0.0037 (5) 0.0210 (6) 0.0021 (5)
N1 0.0413 (8) 0.0384 (8) 0.0412 (9) −0.0073 (6) 0.0195 (7) 0.0029 (6)
C1 0.0359 (10) 0.0454 (10) 0.0392 (10) −0.0024 (7) 0.0170 (8) −0.0011 (8)
C2 0.0417 (11) 0.0628 (13) 0.0575 (13) 0.0017 (9) 0.0278 (10) −0.0055 (10)
C3 0.0575 (14) 0.0827 (16) 0.0557 (14) −0.0054 (11) 0.0367 (12) −0.0149 (11)
C4 0.0558 (14) 0.0982 (18) 0.0403 (12) −0.0084 (12) 0.0226 (11) −0.0121 (11)
C5 0.0383 (10) 0.0776 (14) 0.0405 (12) −0.0030 (9) 0.0181 (9) −0.0024 (10)
C6 0.0347 (9) 0.0431 (9) 0.0384 (10) −0.0037 (7) 0.0183 (8) 0.0017 (8)
C7 0.0344 (9) 0.0394 (9) 0.0353 (10) −0.0045 (7) 0.0156 (8) 0.0017 (7)
C8 0.0336 (9) 0.0510 (10) 0.0345 (10) −0.0024 (7) 0.0173 (8) −0.0013 (8)
C9 0.0376 (10) 0.0579 (12) 0.0466 (12) −0.0060 (8) 0.0221 (9) −0.0049 (9)
C10 0.0359 (11) 0.0898 (17) 0.0515 (13) −0.0125 (11) 0.0208 (10) −0.0118 (11)
C11 0.0339 (11) 0.108 (2) 0.0452 (13) 0.0087 (11) 0.0170 (9) −0.0039 (12)
C12 0.0496 (12) 0.0800 (15) 0.0343 (11) 0.0183 (11) 0.0207 (9) 0.0040 (10)
C13 0.0440 (10) 0.0565 (11) 0.0288 (9) 0.0069 (8) 0.0190 (8) 0.0016 (8)
C14 0.0631 (13) 0.0502 (11) 0.0416 (11) 0.0043 (9) 0.0243 (10) 0.0037 (9)
C15 0.103 (2) 0.0525 (13) 0.0569 (15) 0.0120 (12) 0.0349 (14) 0.0057 (11)
C16 0.116 (2) 0.0699 (17) 0.0615 (16) 0.0430 (17) 0.0412 (17) 0.0142 (14)
C17 0.0735 (16) 0.096 (2) 0.0478 (14) 0.0407 (15) 0.0266 (12) 0.0112 (13)
C18 0.0392 (10) 0.0421 (10) 0.0400 (11) 0.0004 (7) 0.0220 (8) 0.0062 (8)
C19 0.0904 (17) 0.0539 (13) 0.0561 (14) −0.0071 (11) 0.0296 (13) 0.0165 (11)
O1A 0.0482 (8) 0.0822 (10) 0.0491 (9) 0.0035 (7) 0.0308 (7) −0.0040 (7)
O2A 0.0785 (10) 0.0377 (7) 0.0558 (9) −0.0008 (6) 0.0437 (8) −0.0059 (6)
O3A 0.0497 (8) 0.0510 (8) 0.0430 (8) −0.0150 (6) 0.0257 (6) −0.0112 (6)
N1A 0.0441 (8) 0.0343 (7) 0.0327 (8) 0.0001 (6) 0.0212 (7) −0.0004 (6)
C1A 0.0443 (11) 0.0470 (10) 0.0448 (11) 0.0062 (8) 0.0253 (9) 0.0098 (8)
C2A 0.0468 (12) 0.0752 (15) 0.0633 (15) 0.0115 (10) 0.0343 (11) 0.0171 (11)
C3A 0.0406 (12) 0.117 (2) 0.0626 (16) 0.0098 (12) 0.0201 (12) 0.0232 (14)
C4A 0.0492 (14) 0.140 (3) 0.0415 (13) 0.0071 (14) 0.0133 (11) 0.0125 (14)
C5A 0.0530 (13) 0.0939 (17) 0.0376 (12) 0.0075 (11) 0.0242 (10) 0.0092 (11)
C6A 0.0427 (10) 0.0449 (10) 0.0398 (10) 0.0053 (7) 0.0241 (8) 0.0085 (8)
C7A 0.0433 (10) 0.0335 (8) 0.0362 (10) 0.0019 (7) 0.0241 (8) 0.0024 (7)
C8A 0.0378 (9) 0.0396 (9) 0.0314 (9) 0.0033 (7) 0.0184 (8) 0.0018 (7)
C9A 0.0482 (11) 0.0436 (10) 0.0361 (10) 0.0038 (8) 0.0231 (9) 0.0012 (8)
C10A 0.0682 (14) 0.0587 (13) 0.0486 (12) 0.0087 (10) 0.0384 (11) −0.0051 (10)
C11A 0.0640 (14) 0.0759 (15) 0.0486 (13) 0.0025 (11) 0.0410 (11) −0.0010 (10)
C12A 0.0430 (11) 0.0617 (12) 0.0361 (10) −0.0028 (8) 0.0203 (9) 0.0056 (9)
C13A 0.0350 (9) 0.0464 (10) 0.0310 (9) −0.0001 (7) 0.0151 (8) 0.0038 (7)
C14A 0.0511 (11) 0.0443 (10) 0.0497 (12) 0.0021 (8) 0.0275 (10) 0.0048 (9)
C15A 0.0647 (14) 0.0450 (11) 0.0678 (15) −0.0017 (9) 0.0291 (12) 0.0083 (10)
C16A 0.0716 (15) 0.0637 (15) 0.0650 (15) −0.0153 (11) 0.0335 (13) 0.0165 (12)
C17A 0.0608 (13) 0.0790 (16) 0.0479 (13) −0.0136 (11) 0.0319 (11) 0.0091 (11)
C18A 0.0360 (9) 0.0429 (10) 0.0353 (10) −0.0027 (7) 0.0194 (8) −0.0010 (8)
C19A 0.0892 (17) 0.0554 (13) 0.0411 (12) −0.0012 (11) 0.0245 (12) 0.0092 (10)

Geometric parameters (Å, °)

O1—C1 1.365 (2) O1A—H1A1 0.8200
O1—H1 0.8200 O2A—C9A 1.372 (2)
O2—C9 1.361 (2) O2A—H2A1 0.8200
O2—H2 0.8200 O3A—C18A 1.243 (2)
O3—C18 1.246 (2) N1A—C18A 1.318 (2)
N1—C18 1.317 (2) N1A—C7A 1.469 (2)
N1—C7 1.473 (2) N1A—H1A2 0.8600
N1—H1A 0.8600 C1A—C2A 1.378 (3)
C1—C2 1.379 (3) C1A—C6A 1.400 (3)
C1—C6 1.391 (2) C2A—C3A 1.369 (3)
C2—C3 1.374 (3) C2A—H2A2 0.9300
C2—H2A 0.9300 C3A—C4A 1.373 (4)
C3—C4 1.369 (3) C3A—H3A 0.9300
C3—H3 0.9300 C4A—C5A 1.386 (3)
C4—C5 1.380 (3) C4A—H4A 0.9300
C4—H4 0.9300 C5A—C6A 1.378 (3)
C5—C6 1.384 (3) C5A—H5A 0.9300
C5—H5 0.9300 C6A—C7A 1.521 (2)
C6—C7 1.521 (3) C7A—C8A 1.520 (2)
C7—C8 1.518 (2) C7A—H7A 0.9800
C7—H7 0.9800 C8A—C9A 1.374 (2)
C8—C9 1.382 (3) C8A—C13A 1.430 (2)
C8—C13 1.423 (3) C9A—C10A 1.406 (3)
C9—C10 1.405 (3) C10A—C11A 1.344 (3)
C10—C11 1.360 (3) C10A—H10A 0.9300
C10—H10 0.9300 C11A—C12A 1.408 (3)
C11—C12 1.410 (3) C11A—H11A 0.9300
C11—H11 0.9300 C12A—C17A 1.410 (3)
C12—C17 1.412 (3) C12A—C13A 1.423 (3)
C12—C13 1.429 (3) C13A—C14A 1.416 (3)
C13—C14 1.416 (3) C14A—C15A 1.370 (3)
C14—C15 1.358 (3) C14A—H14A 0.9300
C14—H14 0.9300 C15A—C16A 1.400 (4)
C15—C16 1.397 (4) C15A—H15A 0.9300
C15—H15 0.9300 C16A—C17A 1.347 (3)
C16—C17 1.344 (4) C16A—H16A 0.9300
C16—H16 0.9300 C17A—H17A 0.9300
C17—H17 0.9300 C18A—O3A 1.243 (2)
C18—O3 1.246 (2) C18A—O3A 1.243 (2)
C18—C19 1.499 (3) C18A—C19A 1.489 (3)
C19—H19A 0.9600 C19A—H19D 0.9600
C19—H19B 0.9600 C19A—H19E 0.9600
C19—H19C 0.9600 C19A—H19F 0.9600
O1A—C1A 1.357 (2)
C1—O1—H1 109.5 C9A—O2A—H2A1 109.5
C9—O2—H2 109.5 C18A—N1A—C7A 125.89 (14)
C18—N1—C7 126.49 (14) C18A—N1A—H1A2 117.1
C18—N1—H1A 116.8 C7A—N1A—H1A2 117.1
C7—N1—H1A 116.8 O1A—C1A—C2A 121.13 (18)
O1—C1—C2 122.04 (16) O1A—C1A—C6A 118.25 (16)
O1—C1—C6 116.91 (17) C2A—C1A—C6A 120.61 (19)
C2—C1—C6 121.03 (17) C3A—C2A—C1A 120.1 (2)
C3—C2—C1 120.10 (18) C3A—C2A—H2A2 119.9
C3—C2—H2A 120.0 C1A—C2A—H2A2 119.9
C1—C2—H2A 120.0 C2A—C3A—C4A 120.6 (2)
C4—C3—C2 119.9 (2) C2A—C3A—H3A 119.7
C4—C3—H3 120.1 C4A—C3A—H3A 119.7
C2—C3—H3 120.1 C3A—C4A—C5A 119.2 (2)
C3—C4—C5 120.1 (2) C3A—C4A—H4A 120.4
C3—C4—H4 120.0 C5A—C4A—H4A 120.4
C5—C4—H4 120.0 C6A—C5A—C4A 121.6 (2)
C6—C5—C4 121.34 (19) C6A—C5A—H5A 119.2
C6—C5—H5 119.3 C4A—C5A—H5A 119.2
C4—C5—H5 119.3 C5A—C6A—C1A 117.88 (17)
C5—C6—C1 117.60 (18) C5A—C6A—C7A 122.95 (17)
C5—C6—C7 122.49 (16) C1A—C6A—C7A 119.16 (16)
C1—C6—C7 119.90 (16) N1A—C7A—C8A 111.85 (13)
N1—C7—C8 110.73 (14) N1A—C7A—C6A 109.32 (13)
N1—C7—C6 110.26 (14) C8A—C7A—C6A 114.26 (14)
C8—C7—C6 113.48 (14) N1A—C7A—H7A 107.0
N1—C7—H7 107.4 C8A—C7A—H7A 107.0
C8—C7—H7 107.4 C6A—C7A—H7A 107.0
C6—C7—H7 107.4 C9A—C8A—C13A 118.19 (16)
C9—C8—C13 119.13 (17) C9A—C8A—C7A 121.65 (15)
C9—C8—C7 119.21 (16) C13A—C8A—C7A 120.11 (15)
C13—C8—C7 121.61 (15) O2A—C9A—C8A 118.40 (16)
O2—C9—C8 117.37 (16) O2A—C9A—C10A 119.78 (16)
O2—C9—C10 120.90 (18) C8A—C9A—C10A 121.81 (17)
C8—C9—C10 121.71 (19) C11A—C10A—C9A 120.26 (18)
C11—C10—C9 119.6 (2) C11A—C10A—H10A 119.9
C11—C10—H10 120.2 C9A—C10A—H10A 119.9
C9—C10—H10 120.2 C10A—C11A—C12A 121.17 (19)
C10—C11—C12 121.49 (19) C10A—C11A—H11A 119.4
C10—C11—H11 119.3 C12A—C11A—H11A 119.4
C12—C11—H11 119.3 C11A—C12A—C17A 121.7 (2)
C11—C12—C17 122.1 (2) C11A—C12A—C13A 118.89 (17)
C11—C12—C13 118.98 (19) C17A—C12A—C13A 119.44 (19)
C17—C12—C13 119.0 (2) C14A—C13A—C12A 117.06 (16)
C14—C13—C8 123.81 (17) C14A—C13A—C8A 123.40 (17)
C14—C13—C12 117.12 (18) C12A—C13A—C8A 119.53 (16)
C8—C13—C12 119.06 (18) C15A—C14A—C13A 121.6 (2)
C15—C14—C13 121.8 (2) C15A—C14A—H14A 119.2
C15—C14—H14 119.1 C13A—C14A—H14A 119.2
C13—C14—H14 119.1 C14A—C15A—C16A 120.4 (2)
C14—C15—C16 120.4 (3) C14A—C15A—H15A 119.8
C14—C15—H15 119.8 C16A—C15A—H15A 119.8
C16—C15—H15 119.8 C17A—C16A—C15A 119.7 (2)
C17—C16—C15 120.1 (2) C17A—C16A—H16A 120.2
C17—C16—H16 119.9 C15A—C16A—H16A 120.2
C15—C16—H16 119.9 C16A—C17A—C12A 121.8 (2)
C16—C17—C12 121.6 (2) C16A—C17A—H17A 119.1
C16—C17—H17 119.2 C12A—C17A—H17A 119.1
C12—C17—H17 119.2 O3A—C18A—N1A 123.91 (16)
O3—C18—N1 124.33 (16) O3A—C18A—N1A 123.91 (16)
O3—C18—N1 124.33 (16) O3A—C18A—N1A 123.91 (16)
O3—C18—C19 119.64 (17) O3A—C18A—C19A 119.49 (17)
O3—C18—C19 119.64 (17) O3A—C18A—C19A 119.49 (17)
N1—C18—C19 116.02 (17) O3A—C18A—C19A 119.49 (17)
C18—C19—H19A 109.5 N1A—C18A—C19A 116.59 (16)
C18—C19—H19B 109.5 C18A—C19A—H19D 109.5
H19A—C19—H19B 109.5 C18A—C19A—H19E 109.5
C18—C19—H19C 109.5 H19D—C19A—H19E 109.5
H19A—C19—H19C 109.5 C18A—C19A—H19F 109.5
H19B—C19—H19C 109.5 H19D—C19A—H19F 109.5
C1A—O1A—H1A1 109.5 H19E—C19A—H19F 109.5
O1—C1—C2—C3 177.50 (19) C6A—C1A—C2A—C3A −0.1 (3)
C6—C1—C2—C3 −1.1 (3) C1A—C2A—C3A—C4A −0.1 (4)
C1—C2—C3—C4 0.1 (3) C2A—C3A—C4A—C5A 0.1 (4)
C2—C3—C4—C5 0.2 (4) C3A—C4A—C5A—C6A 0.1 (4)
C3—C4—C5—C6 0.4 (4) C4A—C5A—C6A—C1A −0.3 (3)
C4—C5—C6—C1 −1.3 (3) C4A—C5A—C6A—C7A 178.4 (2)
C4—C5—C6—C7 179.9 (2) O1A—C1A—C6A—C5A −178.92 (18)
O1—C1—C6—C5 −177.01 (17) C2A—C1A—C6A—C5A 0.3 (3)
C2—C1—C6—C5 1.7 (3) O1A—C1A—C6A—C7A 2.3 (2)
O1—C1—C6—C7 1.8 (2) C2A—C1A—C6A—C7A −178.44 (17)
C2—C1—C6—C7 −179.54 (17) C18A—N1A—C7A—C8A 122.33 (17)
C18—N1—C7—C8 120.86 (18) C18A—N1A—C7A—C6A −110.10 (18)
C18—N1—C7—C6 −112.71 (19) C5A—C6A—C7A—N1A −114.0 (2)
C5—C6—C7—N1 −121.32 (19) C1A—C6A—C7A—N1A 64.7 (2)
C1—C6—C7—N1 59.9 (2) C5A—C6A—C7A—C8A 12.2 (2)
C5—C6—C7—C8 3.5 (2) C1A—C6A—C7A—C8A −169.11 (15)
C1—C6—C7—C8 −175.20 (15) N1A—C7A—C8A—C9A 39.0 (2)
N1—C7—C8—C9 49.0 (2) C6A—C7A—C8A—C9A −85.9 (2)
C6—C7—C8—C9 −75.7 (2) N1A—C7A—C8A—C13A −143.40 (15)
N1—C7—C8—C13 −133.86 (17) C6A—C7A—C8A—C13A 91.73 (19)
C6—C7—C8—C13 101.53 (19) C13A—C8A—C9A—O2A −174.72 (15)
C13—C8—C9—O2 −176.66 (17) C7A—C8A—C9A—O2A 2.9 (3)
C7—C8—C9—O2 0.6 (3) C13A—C8A—C9A—C10A 4.5 (3)
C13—C8—C9—C10 1.5 (3) C7A—C8A—C9A—C10A −177.87 (17)
C7—C8—C9—C10 178.75 (18) O2A—C9A—C10A—C11A 176.72 (19)
O2—C9—C10—C11 176.8 (2) C8A—C9A—C10A—C11A −2.5 (3)
C8—C9—C10—C11 −1.3 (3) C9A—C10A—C11A—C12A −1.0 (3)
C9—C10—C11—C12 0.4 (3) C10A—C11A—C12A—C17A −176.2 (2)
C10—C11—C12—C17 179.9 (2) C10A—C11A—C12A—C13A 2.3 (3)
C10—C11—C12—C13 0.2 (3) C11A—C12A—C13A—C14A −178.70 (18)
C9—C8—C13—C14 179.16 (18) C17A—C12A—C13A—C14A −0.2 (3)
C7—C8—C13—C14 2.0 (3) C11A—C12A—C13A—C8A −0.2 (3)
C9—C8—C13—C12 −0.8 (3) C17A—C12A—C13A—C8A 178.39 (17)
C7—C8—C13—C12 −177.97 (17) C9A—C8A—C13A—C14A 175.33 (17)
C11—C12—C13—C14 179.99 (19) C7A—C8A—C13A—C14A −2.4 (3)
C17—C12—C13—C14 0.3 (3) C9A—C8A—C13A—C12A −3.1 (2)
C11—C12—C13—C8 −0.1 (3) C7A—C8A—C13A—C12A 179.18 (15)
C17—C12—C13—C8 −179.79 (19) C12A—C13A—C14A—C15A 0.1 (3)
C8—C13—C14—C15 179.4 (2) C8A—C13A—C14A—C15A −178.39 (18)
C12—C13—C14—C15 −0.7 (3) C13A—C14A—C15A—C16A 0.2 (3)
C13—C14—C15—C16 0.9 (4) C14A—C15A—C16A—C17A −0.4 (3)
C14—C15—C16—C17 −0.7 (4) C15A—C16A—C17A—C12A 0.3 (4)
C15—C16—C17—C12 0.3 (4) C11A—C12A—C17A—C16A 178.5 (2)
C11—C12—C17—C16 −179.8 (2) C13A—C12A—C17A—C16A −0.1 (3)
C13—C12—C17—C16 −0.1 (4) C7A—N1A—C18A—O3A −5.8 (3)
C7—N1—C18—O3 −2.7 (3) C7A—N1A—C18A—O3A −5.8 (3)
C7—N1—C18—O3 −2.7 (3) C7A—N1A—C18A—O3A −5.8 (3)
C7—N1—C18—C19 177.57 (19) C7A—N1A—C18A—C19A 173.15 (18)
O1A—C1A—C2A—C3A 179.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.82 1.99 2.792 (2) 166
O2A—H2A1···O3ii 0.82 1.89 2.702 (2) 170
O2—H2···O3Aiii 0.82 1.81 2.588 (2) 159
O1A—H1A1···O3A 0.82 2.16 2.928 (2) 156
C7—H7···O3 0.98 2.51 2.901 (2) 104
C7A—H7A···O3A 0.98 2.47 2.879 (2) 105

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1, z−1/2; (iii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2141).

References

  1. Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett.49, 1660–1664.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Fun, H.-K., Jebas, S. R., Jana, S., Chakrabarty, R. & Goswami, S. (2008). Acta Cryst. E64, o699. [DOI] [PMC free article] [PubMed]
  6. Gade, L. H. (2002). Acc. Chem. Res.35, 575–582. [DOI] [PubMed]
  7. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.
  8. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  9. Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  10. Linton, B. & Hamilton, A. D. (1997). Chem. Rev.97, 1669–1680. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Valeur, B. & Leray, I. (2000). Coord. Chem. Rev.205, 3–40.
  14. Wabnitz, T. C. & Spencer, J. B. (2002). Tetrahedron Lett.43, 3891–3894.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007983/pv2141sup1.cif

e-65-0o740-sup1.cif (29.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007983/pv2141Isup2.hkl

e-65-0o740-Isup2.hkl (310.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES