Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):m473–m474. doi: 10.1107/S1600536809011106

Acridinium (6-carboxy­pyridine-2-carboxyl­ato)(pyridine-2,6-dicarboxyl­ato)zincate(II) penta­hydrate

Masoumeh Tabatabaee a,*, Hossein Aghabozorg b, Jafar Attar Gharamaleki b, Mahboubeh A Sharif c
PMCID: PMC2968778  PMID: 21582403

Abstract

The reaction of Zn(NO3)2 with pyridine-2,6-dicarboxylic acid (pydcH2) and acridine (acr) in aqueous solution leads to the formation of the title compound, (C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O or (acrH)[Zn(pydcH)(pydc)]·5H2O. In the title compound, the ZnII atom is coordinated by four O atoms and two N atoms from the tridentate chelating rings of (pydc)2− and (pydcH) anions. The geometry of the resulting ZnN2O4 coordination can be described as distorted octa­hedral. To balance the charges, one protonated acridine (acrH)+ cation is present. In the crystal structure, extensive O—H⋯O and N—H⋯O hydrogen bonds involving acrH+, the complex anion and uncoordinated water mol­ecules form a three-dimensional network.

Related literature

For related structures, see: Aghabozorg et al. (2009); Moghimi et al. (2005); Ranjbar et al. (2002); Tabatabaee et al. (2008); Aghabozorg, Attar Gharamaleki et al. (2008); Aghabozorg, Firoozi et al. (2008); Aghabozorg, Manteghi et al. (2008); Safaei-Ghomi et al. (2009); Soleimannejad et al. (2008).graphic file with name e-65-0m473-scheme1.jpg

Experimental

Crystal data

  • (C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O

  • M r = 666.89

  • Monoclinic, Inline graphic

  • a = 9.6083 (5) Å

  • b = 18.9681 (9) Å

  • c = 15.5435 (8) Å

  • β = 96.051 (1)°

  • V = 2817.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 120 K

  • 0.60 × 0.14 × 0.14 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.652, T max = 0.879

  • 26948 measured reflections

  • 7457 independent reflections

  • 5795 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.06

  • 7457 reflections

  • 445 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011106/bq2129sup1.cif

e-65-0m473-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011106/bq2129Isup2.hkl

e-65-0m473-Isup2.hkl (364.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N2 2.0011 (16)
Zn1—N1 2.0238 (16)
Zn1—O3 2.0864 (14)
Zn1—O5 2.1443 (15)
Zn1—O7 2.2100 (14)
Zn1—O1 2.3406 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3W 0.88 (4) 1.61 (4) 2.465 (2) 166 (4)
N3—H3N⋯O7 0.83 (3) 1.96 (3) 2.752 (2) 159 (3)
O1W—H1W1⋯O8 0.79 (3) 1.91 (3) 2.696 (2) 174 (3)
O1W—H2W1⋯O4i 0.85 (4) 2.07 (4) 2.901 (2) 165 (3)
O2W—H1W2⋯O4 0.82 (3) 2.07 (3) 2.873 (2) 166 (3)
O2W—H2W2⋯O5Wii 0.86 (3) 1.98 (3) 2.791 (3) 158 (3)
O3W—H1W3⋯O1Wiii 0.85 (4) 1.82 (4) 2.665 (2) 173 (3)
O3W—H2W3⋯O4Wiv 0.85 (4) 1.78 (4) 2.636 (2) 174 (5)
O4W—H1W4⋯O2Wiii 0.81 (4) 1.95 (4) 2.768 (3) 178 (3)
O4W—H2W4⋯O5 0.81 (3) 1.98 (3) 2.788 (2) 172 (4)
O5W—H1W5⋯O6v 0.80 (3) 2.08 (3) 2.880 (2) 173 (3)
O5W—H2W5⋯O6 0.86 (4) 1.99 (5) 2.838 (2) 171 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors express their appreciation to the Islamic Azad University, Yazd Branch, for financial support of this work.

supplementary crystallographic information

Comment

In the recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery from polycarboxylic acids, which are considered as very good donors and amines as acceptors. Among polycarboxylic acids, pyridine-2,6-dicarboxylic acid (pydcH2) as a very important carboxylate derivative has attracted much interest in coordination chemistry and it is the one that we utilized widely in our studies (Aghabozorg, Attar Gharamaleki et al., 2008; Aghabozorg, Firoozi et al., 2008; Aghabozorg, Manteghi et al., 2008; Tabatabaee et al., 2008; Soleimannejad et al., 2008; Aghabozorg et al., 2009; Safaei-Ghomi et al., 2009). In order to develop novel systems, we wish to report the first complex of ZnII with pyridine-2,6-dicarboxylic acid as proton donor and acridine as proton acceptor.

The title compound consists of [Zn(pydcH)(pydc)]- anion, (acrH)+ cation and five uncoordinated water molecules (Fig. 1). ZnII ionic complex includes dianionic ((pydc)2-) and monoanionic ((pydcH)) forms of pydcH2, simultaneously. ZnII atom is six-coordinated by these anions and the geometry of the resulting ZnN2O4 coordination can be described as distorted octahedral (Table 1). The N atoms occupy the axial positions. The N1—Zn1—N2 angle (167.38 (8)°) deviates from linearity. The dihedral angle between the mean planes of the pyridine rings (A1 and A2, defined in Fig. 1) is 88.16 (9)° indicating that (pydc)2– and (pydcH) fragments are almost perpendicular to each other. Zn—N distances of (2.0011 (16)Å and 2.0238 (16)Å and Zn—O distances (Zn1—O1:2.0864 (14)Å, Zn1—O5: 2.1443 (15)Å, Zn1—O3:2.2100 (14)Å and Zn1—O7: 2.3406 (14)Å) are consistent with those found in (pydaH)[Zn(pydcH)(pydc)].3H2O (Ranjbar et al. 2002) and (creatH)[Zn(pydcH)(pydc)].4H2O (Moghimi et al. 2005). There are some hydrogen bonding interactions such as O–H···O and N–H···O between cations, anions and uncoordinated water molecules (Table 2). The water molecules act also as bridging agents and link anions together via hydrogen bonds (Fig. 2). As it is seen in Fig. 3, there are also π-π stacking interactions between the aromatic rings of the coordinated (pydc)2– and (pydcH)- anions and acridinum cation, with distances of 3.537 (1)Å for Cg5···Cg7 [Cg5: N1/C1—C5, Cg7:N3/C15—C20—C21—C22—C27] and 3.751 (1)Å for Cg6···Cg7 (Cg6:N2/C8—C12). Ion pairing, hydrogen bonding, π–π stacking and van der Waals interactions are also effective packing for the crystal structure. These interactions lead to formation of a three-dimensional supramolecular structure.

Experimental

An aqueous solution of zinc nitrate (Zn(NO3)2. 6H2O, (0.15 g, 0.5 mmol) in water (20 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (0.1 g, 0.5 mmol) and 0.25 g (1.5 mmol) acridine. The reaction mixture was stirred at 25°C for 2 h. Colorless crystals of the title compound were obtained after two weeks at room temperature.

Refinement

The H(C) atoms were positioned geometrically and refined in isotropically in riding model with Uiso(H)=1.2Ueq(C). The H atoms of water molecules, OH and NH groups were located in difference Fourier synthesis and refined isotropically.

Figures

Fig. 1.

Fig. 1.

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Fragment of crystal packing (projection along c axis). Hydrogen bonds are shown with dashed lines.

Fig. 3.

Fig. 3.

Representation of π-π stacking in (acrH)[Zn(pydcH)(pydc)].5H2O.

Crystal data

(C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O F(000) = 1376
Mr = 666.89 Dx = 1.572 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8302 reflections
a = 9.6083 (5) Å θ = 2.2–29.7°
b = 18.9681 (9) Å µ = 0.95 mm1
c = 15.5435 (8) Å T = 120 K
β = 96.051 (1)° Prism, yellow
V = 2817.0 (2) Å3 0.60 × 0.14 × 0.14 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 7457 independent reflections
Radiation source: normal-focus sealed tube 5795 reflections with I > 2σ(I)
graphite Rint = 0.034
ω scans θmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −13→13
Tmin = 0.652, Tmax = 0.879 k = −25→25
26948 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.9525P] where P = (Fo2 + 2Fc2)/3
7457 reflections (Δ/σ)max = 0.002
445 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.49831 (3) 0.093889 (12) 0.701036 (14) 0.01975 (8)
O1 0.34045 (16) 0.18535 (8) 0.71906 (9) 0.0242 (3)
O2 0.23932 (16) 0.23960 (8) 0.82468 (10) 0.0231 (3)
H2O 0.198 (5) 0.261 (2) 0.779 (3) 0.092 (15)*
O3 0.63925 (16) 0.01596 (8) 0.74853 (9) 0.0227 (3)
O4 0.73383 (16) −0.03264 (8) 0.87279 (10) 0.0248 (3)
O5 0.32802 (16) 0.02475 (8) 0.65903 (9) 0.0229 (3)
O6 0.20086 (16) −0.01389 (8) 0.53928 (10) 0.0262 (3)
O7 0.65542 (15) 0.17569 (8) 0.68086 (9) 0.0218 (3)
O8 0.74307 (17) 0.23451 (8) 0.57367 (10) 0.0269 (3)
N1 0.48997 (17) 0.10445 (8) 0.82995 (10) 0.0167 (3)
N2 0.48458 (17) 0.10381 (8) 0.57225 (10) 0.0155 (3)
C1 0.4084 (2) 0.15173 (10) 0.86374 (12) 0.0182 (4)
C2 0.4085 (2) 0.15979 (10) 0.95278 (13) 0.0200 (4)
H2A 0.3487 0.1928 0.9764 0.024*
C3 0.5000 (2) 0.11747 (11) 1.00590 (13) 0.0222 (4)
H3A 0.5039 0.1219 1.0670 0.027*
C4 0.5854 (2) 0.06882 (11) 0.96989 (13) 0.0207 (4)
H4A 0.6485 0.0401 1.0057 0.025*
C5 0.5764 (2) 0.06307 (10) 0.88014 (12) 0.0168 (4)
C6 0.3236 (2) 0.19449 (10) 0.79562 (13) 0.0191 (4)
C7 0.6578 (2) 0.01088 (10) 0.83018 (13) 0.0193 (4)
C8 0.3880 (2) 0.06609 (10) 0.52419 (12) 0.0170 (4)
C9 0.3753 (2) 0.07039 (11) 0.43455 (12) 0.0198 (4)
H9A 0.3063 0.0438 0.4003 0.024*
C10 0.4666 (2) 0.11477 (11) 0.39627 (13) 0.0227 (4)
H10A 0.4619 0.1176 0.3350 0.027*
C11 0.5645 (2) 0.15491 (11) 0.44730 (13) 0.0213 (4)
H11A 0.6256 0.1862 0.4219 0.026*
C12 0.5702 (2) 0.14777 (10) 0.53652 (12) 0.0167 (4)
C13 0.2970 (2) 0.02123 (10) 0.57769 (13) 0.0190 (4)
C14 0.6661 (2) 0.18976 (10) 0.60159 (13) 0.0189 (4)
N3 0.76898 (19) 0.21857 (9) 0.84229 (12) 0.0208 (3)
H3N 0.746 (3) 0.2148 (15) 0.7896 (19) 0.037 (8)*
C15 0.6925 (2) 0.26041 (10) 0.88993 (13) 0.0204 (4)
C16 0.5844 (2) 0.30294 (11) 0.85003 (15) 0.0255 (4)
H16A 0.5673 0.3048 0.7887 0.031*
C17 0.5043 (3) 0.34143 (11) 0.90007 (16) 0.0302 (5)
H17A 0.4304 0.3695 0.8731 0.036*
C18 0.5291 (3) 0.34042 (12) 0.99176 (16) 0.0321 (5)
H18A 0.4708 0.3671 1.0253 0.039*
C19 0.6361 (3) 0.30137 (13) 1.03178 (15) 0.0311 (5)
H19A 0.6538 0.3021 1.0931 0.037*
C20 0.7215 (2) 0.25951 (11) 0.98225 (13) 0.0238 (4)
C21 0.8285 (2) 0.21652 (12) 1.01903 (14) 0.0284 (5)
H21A 0.8496 0.2160 1.0801 0.034*
C22 0.9057 (2) 0.17410 (11) 0.96824 (14) 0.0263 (4)
C23 1.0150 (3) 0.12781 (14) 1.00362 (18) 0.0382 (6)
H23A 1.0393 0.1257 1.0644 0.046*
C24 1.0833 (3) 0.08721 (13) 0.9503 (2) 0.0426 (7)
H24A 1.1552 0.0565 0.9743 0.051*
C25 1.0502 (3) 0.08954 (12) 0.8598 (2) 0.0397 (6)
H25A 1.1008 0.0606 0.8241 0.048*
C26 0.9464 (2) 0.13276 (12) 0.82196 (17) 0.0309 (5)
H26A 0.9245 0.1338 0.7609 0.037*
C27 0.8730 (2) 0.17567 (11) 0.87635 (14) 0.0231 (4)
O1W 0.84765 (17) 0.32871 (9) 0.69335 (11) 0.0251 (3)
H1W1 0.815 (3) 0.3033 (16) 0.656 (2) 0.034 (8)*
H2W1 0.813 (4) 0.369 (2) 0.681 (2) 0.065 (11)*
O2W 0.96559 (18) −0.06357 (9) 0.77630 (12) 0.0279 (3)
H1W2 0.909 (3) −0.0493 (17) 0.808 (2) 0.045 (9)*
H2W2 0.940 (3) −0.0417 (16) 0.729 (2) 0.039 (8)*
O3W 0.12555 (19) 0.31700 (9) 0.71080 (10) 0.0262 (3)
H1W3 0.037 (4) 0.3180 (18) 0.708 (2) 0.051 (9)*
H2W3 0.170 (5) 0.356 (2) 0.710 (3) 0.084 (14)*
O4W 0.25508 (19) −0.05822 (9) 0.79542 (12) 0.0302 (4)
H1W4 0.170 (4) −0.0602 (18) 0.791 (2) 0.049 (10)*
H2W4 0.268 (4) −0.0327 (18) 0.755 (2) 0.050 (9)*
O5W 0.0430 (2) −0.01699 (10) 0.37439 (12) 0.0322 (4)
H1W5 −0.029 (3) −0.0086 (15) 0.3945 (19) 0.031 (7)*
H2W5 0.099 (4) −0.016 (2) 0.421 (3) 0.066 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02513 (13) 0.02160 (13) 0.01244 (12) −0.00038 (9) 0.00163 (9) −0.00009 (8)
O1 0.0300 (8) 0.0264 (7) 0.0162 (7) 0.0090 (6) 0.0017 (6) 0.0001 (6)
O2 0.0248 (8) 0.0238 (7) 0.0208 (7) 0.0080 (6) 0.0026 (6) −0.0013 (6)
O3 0.0293 (8) 0.0239 (7) 0.0149 (6) 0.0062 (6) 0.0015 (6) −0.0021 (5)
O4 0.0279 (8) 0.0236 (7) 0.0227 (7) 0.0082 (6) 0.0012 (6) 0.0023 (6)
O5 0.0251 (7) 0.0262 (7) 0.0172 (7) −0.0050 (6) 0.0018 (6) 0.0018 (6)
O6 0.0247 (8) 0.0276 (8) 0.0255 (8) −0.0079 (6) −0.0008 (6) 0.0004 (6)
O7 0.0266 (8) 0.0233 (7) 0.0152 (6) −0.0052 (6) 0.0011 (5) −0.0005 (5)
O8 0.0298 (8) 0.0273 (8) 0.0236 (7) −0.0114 (6) 0.0030 (6) −0.0003 (6)
N1 0.0194 (8) 0.0174 (7) 0.0132 (7) −0.0023 (6) 0.0014 (6) −0.0003 (6)
N2 0.0166 (8) 0.0164 (7) 0.0136 (7) 0.0014 (6) 0.0018 (6) −0.0007 (6)
C1 0.0195 (9) 0.0177 (9) 0.0178 (9) −0.0024 (7) 0.0030 (7) −0.0010 (7)
C2 0.0231 (10) 0.0189 (9) 0.0187 (9) −0.0006 (7) 0.0046 (7) −0.0029 (7)
C3 0.0281 (10) 0.0245 (10) 0.0146 (9) −0.0029 (8) 0.0050 (8) −0.0033 (7)
C4 0.0255 (10) 0.0194 (9) 0.0168 (9) −0.0012 (8) 0.0001 (7) 0.0021 (7)
C5 0.0172 (9) 0.0153 (8) 0.0178 (9) −0.0021 (7) 0.0005 (7) −0.0008 (7)
C6 0.0193 (9) 0.0192 (9) 0.0188 (9) 0.0004 (7) 0.0017 (7) −0.0003 (7)
C7 0.0205 (9) 0.0185 (9) 0.0190 (9) 0.0001 (7) 0.0020 (7) −0.0004 (7)
C8 0.0181 (9) 0.0151 (8) 0.0178 (9) 0.0025 (7) 0.0014 (7) −0.0006 (7)
C9 0.0212 (10) 0.0210 (9) 0.0168 (9) −0.0002 (7) −0.0007 (7) −0.0027 (7)
C10 0.0277 (11) 0.0273 (10) 0.0130 (9) 0.0003 (8) 0.0015 (8) 0.0003 (7)
C11 0.0247 (10) 0.0221 (9) 0.0176 (9) −0.0013 (8) 0.0045 (8) 0.0023 (7)
C12 0.0173 (9) 0.0161 (8) 0.0164 (8) 0.0017 (7) 0.0004 (7) 0.0000 (7)
C13 0.0200 (9) 0.0170 (9) 0.0203 (9) 0.0007 (7) 0.0031 (7) 0.0007 (7)
C14 0.0192 (9) 0.0177 (9) 0.0197 (9) −0.0009 (7) 0.0014 (7) −0.0015 (7)
N3 0.0238 (9) 0.0194 (8) 0.0183 (8) −0.0032 (7) −0.0024 (7) 0.0010 (6)
C15 0.0220 (10) 0.0191 (9) 0.0197 (9) −0.0058 (7) 0.0007 (7) 0.0009 (7)
C16 0.0284 (11) 0.0206 (10) 0.0267 (10) −0.0008 (8) −0.0011 (8) 0.0020 (8)
C17 0.0298 (12) 0.0193 (10) 0.0418 (13) −0.0009 (8) 0.0054 (10) 0.0004 (9)
C18 0.0361 (13) 0.0248 (11) 0.0375 (13) −0.0055 (9) 0.0132 (10) −0.0072 (9)
C19 0.0388 (13) 0.0325 (12) 0.0233 (10) −0.0139 (10) 0.0084 (9) −0.0064 (9)
C20 0.0277 (11) 0.0225 (10) 0.0206 (10) −0.0095 (8) 0.0006 (8) 0.0002 (8)
C21 0.0327 (12) 0.0317 (11) 0.0193 (10) −0.0119 (9) −0.0049 (9) 0.0051 (8)
C22 0.0240 (10) 0.0238 (10) 0.0289 (11) −0.0070 (8) −0.0081 (8) 0.0083 (8)
C23 0.0312 (13) 0.0341 (13) 0.0452 (14) −0.0058 (10) −0.0146 (11) 0.0147 (11)
C24 0.0259 (12) 0.0279 (12) 0.070 (2) 0.0008 (10) −0.0132 (12) 0.0085 (12)
C25 0.0268 (12) 0.0219 (11) 0.0692 (19) −0.0018 (9) 0.0003 (12) −0.0086 (11)
C26 0.0247 (11) 0.0251 (11) 0.0424 (13) −0.0023 (9) 0.0014 (10) −0.0060 (9)
C27 0.0213 (10) 0.0190 (9) 0.0280 (10) −0.0059 (8) −0.0028 (8) 0.0014 (8)
O1W 0.0268 (8) 0.0240 (8) 0.0233 (8) −0.0020 (6) −0.0036 (6) −0.0009 (6)
O2W 0.0274 (8) 0.0299 (8) 0.0273 (8) 0.0023 (7) 0.0068 (7) −0.0007 (7)
O3W 0.0239 (8) 0.0250 (8) 0.0290 (8) 0.0035 (6) −0.0010 (6) −0.0002 (6)
O4W 0.0274 (9) 0.0298 (9) 0.0341 (9) 0.0025 (7) 0.0064 (7) 0.0095 (7)
O5W 0.0264 (9) 0.0412 (10) 0.0288 (9) −0.0026 (7) 0.0019 (7) 0.0048 (7)

Geometric parameters (Å, °)

Zn1—N2 2.0011 (16) N3—C27 1.352 (3)
Zn1—N1 2.0238 (16) N3—C15 1.354 (3)
Zn1—O3 2.0864 (14) N3—H3N 0.83 (3)
Zn1—O5 2.1443 (15) C15—C16 1.407 (3)
Zn1—O7 2.2100 (14) C15—C20 1.433 (3)
Zn1—O1 2.3406 (14) C16—C17 1.362 (3)
O1—C6 1.230 (2) C16—H16A 0.9500
O2—C6 1.292 (2) C17—C18 1.420 (4)
O2—H2O 0.87 (5) C17—H17A 0.9500
O3—C7 1.267 (2) C18—C19 1.363 (4)
O4—C7 1.246 (2) C18—H18A 0.9500
O5—C13 1.270 (2) C19—C20 1.425 (3)
O6—C13 1.240 (2) C19—H19A 0.9500
O7—C14 1.275 (2) C20—C21 1.387 (3)
O8—C14 1.234 (2) C21—C22 1.395 (3)
N1—C5 1.334 (2) C21—H21A 0.9500
N1—C1 1.335 (2) C22—C27 1.430 (3)
N2—C12 1.333 (2) C22—C23 1.433 (3)
N2—C8 1.336 (2) C23—C24 1.351 (4)
C1—C2 1.392 (3) C23—H23A 0.9500
C1—C6 1.503 (3) C24—C25 1.411 (4)
C2—C3 1.395 (3) C24—H24A 0.9500
C2—H2A 0.9500 C25—C26 1.374 (4)
C3—C4 1.391 (3) C25—H25A 0.9500
C3—H3A 0.9500 C26—C27 1.414 (3)
C4—C5 1.393 (3) C26—H26A 0.9500
C4—H4A 0.9500 O1W—H1W1 0.79 (3)
C5—C7 1.524 (3) O1W—H2W1 0.84 (4)
C8—C9 1.388 (3) O2W—H1W2 0.82 (3)
C8—C13 1.527 (3) O2W—H2W2 0.85 (3)
C9—C10 1.394 (3) O3W—H1W3 0.85 (4)
C9—H9A 0.9500 O3W—H2W3 0.85 (5)
C10—C11 1.392 (3) O4W—H1W4 0.82 (4)
C10—H10A 0.9500 O4W—H2W4 0.81 (4)
C11—C12 1.389 (3) O5W—H1W5 0.80 (3)
C11—H11A 0.9500 O5W—H2W5 0.86 (4)
C12—C14 1.520 (3)
N2—Zn1—N1 167.38 (7) C10—C11—H11A 121.0
N2—Zn1—O3 113.11 (6) N2—C12—C11 121.08 (18)
N1—Zn1—O3 79.15 (6) N2—C12—C14 114.08 (16)
N2—Zn1—O5 77.60 (6) C11—C12—C14 124.79 (18)
N1—Zn1—O5 104.68 (6) O6—C13—O5 126.33 (19)
O3—Zn1—O5 96.92 (6) O6—C13—C8 118.50 (17)
N2—Zn1—O7 76.47 (6) O5—C13—C8 115.16 (17)
N1—Zn1—O7 99.78 (6) O8—C14—O7 126.56 (18)
O3—Zn1—O7 96.89 (6) O8—C14—C12 118.05 (17)
O5—Zn1—O7 153.75 (5) O7—C14—C12 115.37 (17)
N2—Zn1—O1 94.29 (6) C27—N3—C15 124.05 (19)
N1—Zn1—O1 73.40 (6) C27—N3—H3N 116 (2)
O3—Zn1—O1 152.55 (5) C15—N3—H3N 119 (2)
O5—Zn1—O1 90.37 (6) N3—C15—C16 120.89 (19)
O7—Zn1—O1 87.57 (6) N3—C15—C20 118.76 (19)
C6—O1—Zn1 111.93 (13) C16—C15—C20 120.3 (2)
C6—O2—H2O 106 (3) C17—C16—C15 119.4 (2)
C7—O3—Zn1 115.21 (12) C17—C16—H16A 120.3
C13—O5—Zn1 115.26 (12) C15—C16—H16A 120.3
C14—O7—Zn1 114.18 (12) C16—C17—C18 121.4 (2)
C5—N1—C1 121.40 (17) C16—C17—H17A 119.3
C5—N1—Zn1 115.70 (13) C18—C17—H17A 119.3
C1—N1—Zn1 122.84 (13) C19—C18—C17 120.3 (2)
C12—N2—C8 121.65 (16) C19—C18—H18A 119.9
C12—N2—Zn1 119.81 (13) C17—C18—H18A 119.9
C8—N2—Zn1 118.53 (13) C18—C19—C20 120.4 (2)
N1—C1—C2 121.71 (18) C18—C19—H19A 119.8
N1—C1—C6 112.49 (16) C20—C19—H19A 119.8
C2—C1—C6 125.77 (18) C21—C20—C19 123.3 (2)
C1—C2—C3 117.39 (18) C21—C20—C15 118.5 (2)
C1—C2—H2A 121.3 C19—C20—C15 118.2 (2)
C3—C2—H2A 121.3 C20—C21—C22 121.4 (2)
C4—C3—C2 120.34 (18) C20—C21—H21A 119.3
C4—C3—H3A 119.8 C22—C21—H21A 119.3
C2—C3—H3A 119.8 C21—C22—C27 118.6 (2)
C3—C4—C5 118.55 (18) C21—C22—C23 123.2 (2)
C3—C4—H4A 120.7 C27—C22—C23 118.1 (2)
C5—C4—H4A 120.7 C24—C23—C22 119.9 (2)
N1—C5—C4 120.58 (18) C24—C23—H23A 120.1
N1—C5—C7 113.94 (16) C22—C23—H23A 120.1
C4—C5—C7 125.47 (18) C23—C24—C25 121.4 (2)
O1—C6—O2 125.66 (19) C23—C24—H24A 119.3
O1—C6—C1 119.23 (18) C25—C24—H24A 119.3
O2—C6—C1 115.09 (17) C26—C25—C24 121.5 (3)
O4—C7—O3 126.57 (19) C26—C25—H25A 119.2
O4—C7—C5 117.59 (17) C24—C25—H25A 119.2
O3—C7—C5 115.84 (17) C25—C26—C27 118.2 (2)
N2—C8—C9 120.81 (18) C25—C26—H26A 120.9
N2—C8—C13 113.42 (16) C27—C26—H26A 120.9
C9—C8—C13 125.76 (18) N3—C27—C26 120.4 (2)
C8—C9—C10 118.12 (18) N3—C27—C22 118.6 (2)
C8—C9—H9A 120.9 C26—C27—C22 120.9 (2)
C10—C9—H9A 120.9 H1W1—O1W—H2W1 105 (3)
C11—C10—C9 120.35 (18) H1W2—O2W—H2W2 102 (3)
C11—C10—H10A 119.8 H1W3—O3W—H2W3 119 (4)
C9—C10—H10A 119.8 H1W4—O4W—H2W4 101 (3)
C12—C11—C10 117.95 (19) H1W5—O5W—H2W5 99 (3)
C12—C11—H11A 121.0
N2—Zn1—O1—C6 −179.71 (14) Zn1—O3—C7—C5 −1.0 (2)
N1—Zn1—O1—C6 −2.52 (14) N1—C5—C7—O4 −175.43 (18)
O3—Zn1—O1—C6 −3.2 (2) C4—C5—C7—O4 3.6 (3)
O5—Zn1—O1—C6 102.70 (14) N1—C5—C7—O3 3.8 (3)
O7—Zn1—O1—C6 −103.48 (14) C4—C5—C7—O3 −177.18 (19)
N2—Zn1—O3—C7 175.78 (14) C12—N2—C8—C9 1.3 (3)
N1—Zn1—O3—C7 −1.10 (14) Zn1—N2—C8—C9 −179.21 (14)
O5—Zn1—O3—C7 −104.79 (15) C12—N2—C8—C13 −177.72 (16)
O7—Zn1—O3—C7 97.59 (14) Zn1—N2—C8—C13 1.8 (2)
O1—Zn1—O3—C7 −0.5 (2) N2—C8—C9—C10 0.4 (3)
N2—Zn1—O5—C13 0.03 (14) C13—C8—C9—C10 179.29 (18)
N1—Zn1—O5—C13 167.26 (14) C8—C9—C10—C11 −1.8 (3)
O3—Zn1—O5—C13 −112.19 (14) C9—C10—C11—C12 1.6 (3)
O7—Zn1—O5—C13 9.1 (2) C8—N2—C12—C11 −1.5 (3)
O1—Zn1—O5—C13 94.34 (14) Zn1—N2—C12—C11 178.99 (14)
N2—Zn1—O7—C14 −1.10 (13) C8—N2—C12—C14 176.01 (16)
N1—Zn1—O7—C14 −168.79 (14) Zn1—N2—C12—C14 −3.5 (2)
O3—Zn1—O7—C14 111.08 (14) C10—C11—C12—N2 0.0 (3)
O5—Zn1—O7—C14 −10.2 (2) C10—C11—C12—C14 −177.22 (19)
O1—Zn1—O7—C14 −96.10 (14) Zn1—O5—C13—O6 −178.26 (17)
N2—Zn1—N1—C5 −163.5 (3) Zn1—O5—C13—C8 0.8 (2)
O3—Zn1—N1—C5 3.30 (13) N2—C8—C13—O6 177.49 (17)
O5—Zn1—N1—C5 97.69 (14) C9—C8—C13—O6 −1.5 (3)
O7—Zn1—N1—C5 −91.92 (14) N2—C8—C13—O5 −1.7 (2)
O1—Zn1—N1—C5 −176.39 (15) C9—C8—C13—O5 179.34 (19)
N2—Zn1—N1—C1 13.6 (4) Zn1—O7—C14—O8 177.92 (17)
O3—Zn1—N1—C1 −179.60 (16) Zn1—O7—C14—C12 −0.3 (2)
O5—Zn1—N1—C1 −85.21 (15) N2—C12—C14—O8 −176.04 (18)
O7—Zn1—N1—C1 85.18 (15) C11—C12—C14—O8 1.4 (3)
O1—Zn1—N1—C1 0.71 (14) N2—C12—C14—O7 2.3 (2)
N1—Zn1—N2—C12 76.6 (3) C11—C12—C14—O7 179.78 (19)
O3—Zn1—N2—C12 −89.25 (15) C27—N3—C15—C16 −179.05 (19)
O5—Zn1—N2—C12 178.44 (15) C27—N3—C15—C20 −0.4 (3)
O7—Zn1—N2—C12 2.55 (14) N3—C15—C16—C17 176.4 (2)
O1—Zn1—N2—C12 89.01 (14) C20—C15—C16—C17 −2.2 (3)
N1—Zn1—N2—C8 −102.9 (3) C15—C16—C17—C18 1.0 (3)
O3—Zn1—N2—C8 91.25 (14) C16—C17—C18—C19 1.1 (3)
O5—Zn1—N2—C8 −1.06 (13) C17—C18—C19—C20 −1.9 (3)
O7—Zn1—N2—C8 −176.94 (15) C18—C19—C20—C21 −177.4 (2)
O1—Zn1—N2—C8 −90.49 (14) C18—C19—C20—C15 0.7 (3)
C5—N1—C1—C2 −0.5 (3) N3—C15—C20—C21 1.0 (3)
Zn1—N1—C1—C2 −177.47 (14) C16—C15—C20—C21 179.63 (19)
C5—N1—C1—C6 177.80 (17) N3—C15—C20—C19 −177.22 (18)
Zn1—N1—C1—C6 0.9 (2) C16—C15—C20—C19 1.4 (3)
N1—C1—C2—C3 1.4 (3) C19—C20—C21—C22 177.2 (2)
C6—C1—C2—C3 −176.73 (19) C15—C20—C21—C22 −0.9 (3)
C1—C2—C3—C4 −0.8 (3) C20—C21—C22—C27 0.2 (3)
C2—C3—C4—C5 −0.6 (3) C20—C21—C22—C23 −178.6 (2)
C1—N1—C5—C4 −0.9 (3) C21—C22—C23—C24 178.6 (2)
Zn1—N1—C5—C4 176.22 (14) C27—C22—C23—C24 −0.2 (3)
C1—N1—C5—C7 178.16 (17) C22—C23—C24—C25 0.4 (4)
Zn1—N1—C5—C7 −4.7 (2) C23—C24—C25—C26 −0.5 (4)
C3—C4—C5—N1 1.5 (3) C24—C25—C26—C27 0.3 (4)
C3—C4—C5—C7 −177.51 (19) C15—N3—C27—C26 178.98 (19)
Zn1—O1—C6—O2 −177.61 (16) C15—N3—C27—C22 −0.3 (3)
Zn1—O1—C6—C1 3.8 (2) C25—C26—C27—N3 −179.3 (2)
N1—C1—C6—O1 −3.4 (3) C25—C26—C27—C22 −0.1 (3)
C2—C1—C6—O1 174.9 (2) C21—C22—C27—N3 0.4 (3)
N1—C1—C6—O2 177.91 (17) C23—C22—C27—N3 179.27 (19)
C2—C1—C6—O2 −3.8 (3) C21—C22—C27—C26 −178.9 (2)
Zn1—O3—C7—O4 178.12 (17) C23—C22—C27—C26 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O3W 0.88 (4) 1.61 (4) 2.465 (2) 166 (4)
N3—H3N···O7 0.83 (3) 1.96 (3) 2.752 (2) 159 (3)
O1W—H1W1···O8 0.79 (3) 1.91 (3) 2.696 (2) 174 (3)
O1W—H2W1···O4i 0.85 (4) 2.07 (4) 2.901 (2) 165 (3)
O2W—H1W2···O4 0.82 (3) 2.07 (3) 2.873 (2) 166 (3)
O2W—H2W2···O5Wii 0.86 (3) 1.98 (3) 2.791 (3) 158 (3)
O3W—H1W3···O1Wiii 0.85 (4) 1.82 (4) 2.665 (2) 173 (3)
O3W—H2W3···O4Wiv 0.85 (4) 1.78 (4) 2.636 (2) 174 (5)
O4W—H1W4···O2Wiii 0.81 (4) 1.95 (4) 2.768 (3) 178 (3)
O4W—H2W4···O5 0.81 (3) 1.98 (3) 2.788 (2) 172 (4)
O5W—H1W5···O6v 0.80 (3) 2.08 (3) 2.880 (2) 173 (3)
O5W—H2W5···O6 0.86 (4) 1.99 (5) 2.838 (2) 171 (4)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2129).

References

  1. Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188. [DOI] [PMC free article] [PubMed]
  2. Aghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186–m187. [DOI] [PMC free article] [PubMed]
  3. Aghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743–m744. [DOI] [PMC free article] [PubMed]
  4. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184–227.
  5. Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Moghimi, A., Sharif, M. A., Shokrollahic, A., Shamsipurc, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem.631, 902–908.
  7. Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci.18, 219–220. [DOI] [PubMed]
  8. Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soleimannejad, J., Aghabozorg, H. & Hooshmand, S. (2008). Acta Cryst. E64, m564–m565. [DOI] [PMC free article] [PubMed]
  12. Tabatabaee, M., Aghabozorg, H., Nasrolahzadeh, R., Roshan, L. & Firoozi, N. (2008). Acta Cryst. E64, m1290. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011106/bq2129sup1.cif

e-65-0m473-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011106/bq2129Isup2.hkl

e-65-0m473-Isup2.hkl (364.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES