Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o862–o863. doi: 10.1107/S1600536809009209

2-Methyl-3-(5-methyl-2-thien­yl)-5-phenyl­perhydro­pyrrolo[3,4-d]isoxazole-4,6-dione

Mustafa Odabaşoğlu a, Hamdi Özkan b, Yılmaz Yıldırır c, Orhan Büyükgüngör d,*
PMCID: PMC2968779  PMID: 21582577

Abstract

In the mol­ecule of the title compound, C17H16N2O3S, the phenyl ring is oriented with respect to the thio­phene and succinimide rings at dihedral angles of 88.08 (3) and 57.81 (3)°, respectively; the dihedral angle between the thio­phene and succinimide rings is 35.69 (3)°. The isoxazole ring adopts an envelope conformation with the N atom at the flap position. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the b axis. Weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For nitrones as versatile synthetic intermediates in organic synthesis, see: Black et al. (1975); Banerji & Sahu (1986); Torsell (1988); Banerji & Basu (1992). For nitrones as a convenient class of compounds for the syntheses of ultimate carcinogens, see: Mallesha, Ravikumar, Mantelingu et al. (2001); Mallesha, Ravikumar & Rangappa (2001). For the 1,3-dipolar cycloaddition reaction of nitrones with alkenes in the preparation of isoxazolidines, see: Tufariello (1984). For isoxazolidines in the synthesis of β-lactams, see: Padwa et al. (1981, 1984). For the use of β-lactams to treat bacterial infections, see: Ochiai et al. (1967); as natural products, see: Baldwin & Aube (1987); as versatile synthetic intermediates, see: Padwa (1984). For the preparation of C-(5-Methyl-2-thienyl)-N-methylnitrone used in the synthesis, see: Heaney et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o862-scheme1.jpg

Experimental

Crystal data

  • C17H16N2O3S

  • M r = 328.38

  • Monoclinic, Inline graphic

  • a = 12.6558 (5) Å

  • b = 8.5738 (3) Å

  • c = 19.3824 (8) Å

  • β = 128.654 (3)°

  • V = 1642.42 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.73 × 0.52 × 0.26 mm

Data collection

  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.685, T max = 0.946

  • 19464 measured reflections

  • 3401 independent reflections

  • 2872 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.098

  • S = 1.05

  • 3401 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009209/hk2634sup1.cif

e-65-0o862-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009209/hk2634Isup2.hkl

e-65-0o862-Isup2.hkl (163.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H18⋯O2i 0.94 (2) 2.41 (2) 3.103 (2) 130
C2—H2⋯Cg1ii 0.93 2.99 3.83 (2) 152 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the S1/C13–C16 ring.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS 2 diffractometer (purchased under grant No. F.279 of the University Research Fund).

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition reaction of nitrones to olefins is of synthetic interest. In the present work, isoxazolidines have been synthesized in high yield via intermolecular cycloaddition of N-arylnitrone with monosubstituted olefins and are employed for biological evaluation. Nitrones are versatile synthetic intermediates in organic synthesis (Black et al., 1975; Banerji & Sahu, 1986; Torsell, 1988; Banerji & Basu, 1992). Recently, they reported that nitrones are a convenient class of compounds for the syntheses of ultimate carcinogens (Mallesha, Ravikumar, Mantelingu et al., 2001); Mallesha, Ravikumar & Rangappa, 2001), which are biologically interesting molecules. The 1,3-dipolar cycloaddition reaction of nitrones with alkenes is an important method for preparing isoxazolidines in a regioselective and stereoselective manner (Tufariello, 1984). These isoxazolidines are used in the syntheses of β-lactams (Padwa et al., 1981; Padwa et al., 1984) which are of value in the treatment of bacterial infections (Ochiai et al., 1967), occur as natural products (Baldwin & Aube, 1987), serve as versatile synthetic intermediates (Padwa, 1984), and are biologically interesting compounds (Ochiai et al., 1967). In view of the interest shown in these compounds, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C7-C10) and D (S1/C13-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 57.81 (3), A/D = 88.08 (3) and B/D = 35.69 (3) °. Ring C (O3/N2/C8/C9/C11) adopts envelope conformation with N2 atom displaced by 0.736 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2) into infinite chains along the b-axis, in which they may be effective in the stabilization of the structure. The weak C—H···π interaction (Table 1) may further stabilize the structure.

Experimental

C-(5-Methyl-2-thienyl)-N-methylnitrone was prepared from 5-methylthiophene-2 -carbaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in CH2Cl2 (Scheme 2) according to the literature method (Heaney et al., 2001). For the preparation of the title compound, C-(5-methyl-2-thienyl)-N -methylnitrone (471 mg, 3 mmol) and N-phenylmaleimide (570 mg, 3.3 mmol) were dissolved in benzene (50 ml). The reaction mixture was refluxed for 12 h, and monitored by TLC (Scheme 2). After evaporation of the solvent, the reaction mixture was separated by column chromatography, using mixtures of petroleum ether and ethyl acetate (1:2) as the eluant. The trans-isomer, was recrystallized from CHCl3/n-hexane (1:3) in 2 d (m.p. 425-428 K).

Refinement

Atoms H18, H19 and H20 were located in difference synthesis and refined isotropically [C-H = 0.941 (16)-0.974 (17) Å and Uiso(H) = 0.049 (4)-0.061 (5) Å2]. Remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound [symmetry code: (i) 1-x, y+1/2, z]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C17H16N2O3S F(000) = 688
Mr = 328.38 Dx = 1.328 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19464 reflections
a = 12.6558 (5) Å θ = 1.6–28.0°
b = 8.5738 (3) Å µ = 0.21 mm1
c = 19.3824 (8) Å T = 296 K
β = 128.654 (3)° Prism, colorless
V = 1642.42 (13) Å3 0.73 × 0.52 × 0.26 mm
Z = 4

Data collection

STOE IPDS 2 diffractometer 3401 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2872 reflections with I > 2σ(I)
plane graphite Rint = 0.028
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 2.1°
ω–scan rotation method h = −15→15
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −10→10
Tmin = 0.685, Tmax = 0.946 l = −24→24
19464 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3
3401 reflections (Δ/σ)max = 0.001
222 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.31342 (4) 0.24446 (5) 0.79541 (3) 0.06492 (15)
O1 0.18469 (12) 0.56188 (13) 0.50732 (7) 0.0639 (3)
O2 0.42647 (11) 0.86900 (14) 0.75274 (7) 0.0629 (3)
O3 0.28425 (11) 0.60569 (12) 0.76942 (7) 0.0549 (3)
N1 0.30675 (12) 0.74300 (13) 0.61858 (8) 0.0479 (3)
N2 0.14465 (13) 0.58932 (14) 0.68562 (9) 0.0527 (3)
C1 0.29019 (15) 0.87293 (17) 0.56598 (9) 0.0509 (3)
C2 0.2287 (2) 1.0061 (2) 0.56436 (13) 0.0712 (5)
H2 0.1985 1.0126 0.5974 0.085*
C3 0.2120 (3) 1.1305 (2) 0.51308 (15) 0.0896 (7)
H3 0.1707 1.2213 0.5119 0.108*
C4 0.2556 (3) 1.1214 (3) 0.46425 (15) 0.0889 (6)
H4 0.2436 1.2055 0.4297 0.107*
C5 0.3173 (2) 0.9880 (3) 0.46614 (13) 0.0814 (6)
H5 0.3473 0.9821 0.4330 0.098*
C6 0.33513 (17) 0.8621 (2) 0.51722 (11) 0.0628 (4)
H6 0.3768 0.7715 0.5186 0.075*
C7 0.25037 (14) 0.59615 (17) 0.58428 (9) 0.0473 (3)
C8 0.28380 (14) 0.49173 (17) 0.65825 (9) 0.0460 (3)
H18 0.3330 (16) 0.4050 (19) 0.6624 (10) 0.053 (4)*
C9 0.36272 (14) 0.59533 (18) 0.74030 (9) 0.0490 (3)
H20 0.4521 (18) 0.5567 (19) 0.7893 (11) 0.061 (5)*
C10 0.37259 (13) 0.75292 (18) 0.70902 (9) 0.0487 (3)
C11 0.15792 (14) 0.44699 (17) 0.64828 (9) 0.0472 (3)
H19 0.0810 (16) 0.4439 (17) 0.5872 (10) 0.049 (4)*
C12 0.05862 (19) 0.5727 (2) 0.71120 (13) 0.0675 (5)
H12A 0.0615 0.6671 0.7390 0.101*
H12B 0.0905 0.4873 0.7518 0.101*
H12C −0.0328 0.5527 0.6596 0.101*
C13 0.17079 (14) 0.29515 (17) 0.69109 (9) 0.0490 (3)
C14 0.07838 (16) 0.17956 (19) 0.65756 (11) 0.0585 (4)
H14 −0.0060 0.1843 0.6020 0.070*
C15 0.12214 (19) 0.0503 (2) 0.71510 (13) 0.0654 (4)
H15 0.0695 −0.0383 0.7005 0.079*
C16 0.2461 (2) 0.06732 (18) 0.79239 (11) 0.0611 (4)
C17 0.3246 (3) −0.0399 (2) 0.87043 (13) 0.0863 (6)
H17A 0.3342 0.0069 0.9191 0.104*
H17B 0.4125 −0.0580 0.8868 0.104*
H17C 0.2774 −0.1372 0.8554 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0661 (3) 0.0518 (2) 0.0513 (2) −0.00077 (18) 0.0242 (2) 0.00449 (17)
O1 0.0760 (7) 0.0603 (7) 0.0466 (6) −0.0122 (5) 0.0340 (6) −0.0086 (5)
O2 0.0621 (6) 0.0689 (7) 0.0590 (6) −0.0249 (5) 0.0385 (5) −0.0200 (5)
O3 0.0620 (6) 0.0565 (6) 0.0547 (6) −0.0088 (5) 0.0406 (5) −0.0077 (5)
N1 0.0488 (6) 0.0494 (6) 0.0469 (6) −0.0058 (5) 0.0306 (5) −0.0050 (5)
N2 0.0511 (7) 0.0495 (7) 0.0634 (7) 0.0039 (5) 0.0386 (6) 0.0026 (6)
C1 0.0514 (8) 0.0511 (8) 0.0498 (8) −0.0087 (6) 0.0314 (7) −0.0057 (6)
C2 0.0973 (13) 0.0549 (9) 0.0763 (11) 0.0028 (9) 0.0615 (11) −0.0019 (8)
C3 0.1285 (19) 0.0525 (10) 0.0891 (14) 0.0070 (11) 0.0685 (14) 0.0019 (10)
C4 0.1185 (18) 0.0681 (12) 0.0788 (13) −0.0123 (12) 0.0610 (13) 0.0090 (10)
C5 0.0878 (13) 0.0980 (15) 0.0694 (11) −0.0068 (12) 0.0544 (11) 0.0105 (11)
C6 0.0620 (9) 0.0733 (11) 0.0584 (9) 0.0005 (8) 0.0401 (8) 0.0018 (8)
C7 0.0444 (7) 0.0486 (7) 0.0483 (7) −0.0017 (6) 0.0286 (6) −0.0046 (6)
C8 0.0421 (7) 0.0459 (7) 0.0460 (7) 0.0033 (6) 0.0257 (6) −0.0006 (6)
C9 0.0412 (7) 0.0571 (8) 0.0433 (7) 0.0011 (6) 0.0237 (6) −0.0017 (6)
C10 0.0391 (6) 0.0587 (8) 0.0482 (7) −0.0080 (6) 0.0273 (6) −0.0084 (6)
C11 0.0422 (7) 0.0481 (7) 0.0449 (7) 0.0011 (6) 0.0242 (6) 0.0014 (6)
C12 0.0724 (11) 0.0608 (10) 0.0930 (13) 0.0054 (8) 0.0633 (11) 0.0042 (9)
C13 0.0488 (7) 0.0464 (7) 0.0502 (8) 0.0001 (6) 0.0301 (6) −0.0006 (6)
C14 0.0538 (8) 0.0563 (9) 0.0629 (9) −0.0062 (7) 0.0352 (7) −0.0017 (7)
C15 0.0780 (11) 0.0516 (9) 0.0828 (12) −0.0090 (8) 0.0581 (10) −0.0012 (8)
C16 0.0862 (12) 0.0480 (8) 0.0642 (10) 0.0071 (8) 0.0542 (10) 0.0048 (7)
C17 0.1304 (19) 0.0610 (11) 0.0754 (12) 0.0163 (11) 0.0682 (13) 0.0158 (9)

Geometric parameters (Å, °)

C1—C2 1.371 (2) C10—O2 1.2049 (18)
C1—C6 1.377 (2) C10—N1 1.3963 (18)
C1—N1 1.4345 (18) C11—N2 1.4809 (19)
C2—C3 1.381 (3) C11—C13 1.497 (2)
C2—H2 0.9300 C11—H19 0.954 (15)
C3—C4 1.363 (3) C12—N2 1.458 (2)
C3—H3 0.9300 C12—H12A 0.9600
C4—C5 1.372 (3) C12—H12B 0.9600
C4—H4 0.9300 C12—H12C 0.9600
C5—C6 1.385 (3) C13—C14 1.350 (2)
C5—H5 0.9300 C13—S1 1.7252 (15)
C6—H6 0.9300 C14—C15 1.417 (2)
C7—O1 1.2056 (17) C14—H14 0.9300
C7—N1 1.3942 (18) C15—C16 1.338 (3)
C7—C8 1.509 (2) C15—H15 0.9300
C8—C9 1.5269 (19) C16—C17 1.497 (2)
C8—C11 1.529 (2) C16—S1 1.7243 (17)
C8—H18 0.941 (16) C17—H17A 0.9600
C9—O3 1.4188 (18) C17—H17B 0.9600
C9—C10 1.518 (2) C17—H17C 0.9600
C9—H20 0.974 (17) N2—O3 1.4813 (16)
C2—C1—C6 120.81 (16) N2—C11—C8 99.14 (11)
C2—C1—N1 119.46 (14) C13—C11—C8 113.83 (12)
C6—C1—N1 119.72 (14) N2—C11—H19 106.8 (9)
C1—C2—C3 119.26 (18) C13—C11—H19 109.7 (9)
C1—C2—H2 120.4 C8—C11—H19 109.8 (9)
C3—C2—H2 120.4 N2—C12—H12A 109.5
C4—C3—C2 120.6 (2) N2—C12—H12B 109.5
C4—C3—H3 119.7 H12A—C12—H12B 109.5
C2—C3—H3 119.7 N2—C12—H12C 109.5
C3—C4—C5 119.98 (19) H12A—C12—H12C 109.5
C3—C4—H4 120.0 H12B—C12—H12C 109.5
C5—C4—H4 120.0 C14—C13—C11 127.58 (14)
C4—C5—C6 120.29 (19) C14—C13—S1 109.68 (12)
C4—C5—H5 119.9 C11—C13—S1 122.73 (11)
C6—C5—H5 119.9 C13—C14—C15 113.59 (15)
C1—C6—C5 119.05 (17) C13—C14—H14 123.2
C1—C6—H6 120.5 C15—C14—H14 123.2
C5—C6—H6 120.5 C16—C15—C14 113.85 (15)
O1—C7—N1 124.20 (14) C16—C15—H15 123.1
O1—C7—C8 126.75 (13) C14—C15—H15 123.1
N1—C7—C8 109.05 (11) C15—C16—C17 129.64 (18)
C7—C8—C9 104.90 (12) C15—C16—S1 110.06 (12)
C7—C8—C11 112.15 (11) C17—C16—S1 120.29 (16)
C9—C8—C11 103.27 (11) C16—C17—H17A 109.5
C7—C8—H18 109.1 (10) C16—C17—H17B 109.5
C9—C8—H18 113.8 (10) H17A—C17—H17B 109.5
C11—C8—H18 113.2 (10) C16—C17—H17C 109.5
O3—C9—C10 110.85 (12) H17A—C17—H17C 109.5
O3—C9—C8 106.60 (11) H17B—C17—H17C 109.5
C10—C9—C8 105.39 (11) C7—N1—C10 112.34 (12)
O3—C9—H20 108.0 (10) C7—N1—C1 123.94 (12)
C10—C9—H20 110.9 (10) C10—N1—C1 123.56 (12)
C8—C9—H20 115.0 (10) C12—N2—C11 114.98 (12)
O2—C10—N1 124.40 (14) C12—N2—O3 105.60 (12)
O2—C10—C9 127.31 (13) C11—N2—O3 101.08 (10)
N1—C10—C9 108.29 (12) C9—O3—N2 102.11 (10)
N2—C11—C13 116.88 (12) C16—S1—C13 92.81 (8)
C6—C1—C2—C3 0.0 (3) S1—C13—C14—C15 −0.39 (18)
N1—C1—C2—C3 −179.52 (17) C13—C14—C15—C16 0.8 (2)
C1—C2—C3—C4 0.2 (3) C14—C15—C16—C17 177.85 (17)
C2—C3—C4—C5 −0.3 (4) C14—C15—C16—S1 −0.8 (2)
C3—C4—C5—C6 0.3 (3) O1—C7—N1—C10 177.30 (14)
C2—C1—C6—C5 0.0 (3) C8—C7—N1—C10 −2.03 (16)
N1—C1—C6—C5 179.42 (15) O1—C7—N1—C1 1.9 (2)
C4—C5—C6—C1 −0.1 (3) C8—C7—N1—C1 −177.45 (12)
O1—C7—C8—C9 −177.41 (15) O2—C10—N1—C7 −178.38 (14)
N1—C7—C8—C9 1.90 (15) C9—C10—N1—C7 1.26 (15)
O1—C7—C8—C11 −66.0 (2) O2—C10—N1—C1 −2.9 (2)
N1—C7—C8—C11 113.29 (13) C9—C10—N1—C1 176.71 (12)
C7—C8—C9—O3 116.74 (12) C2—C1—N1—C7 119.20 (17)
C11—C8—C9—O3 −0.88 (14) C6—C1—N1—C7 −60.3 (2)
C7—C8—C9—C10 −1.12 (14) C2—C1—N1—C10 −55.7 (2)
C11—C8—C9—C10 −118.74 (12) C6—C1—N1—C10 124.80 (16)
O3—C9—C10—O2 64.68 (19) C13—C11—N2—C12 −40.09 (18)
C8—C9—C10—O2 179.63 (14) C8—C11—N2—C12 −162.79 (13)
O3—C9—C10—N1 −114.96 (12) C13—C11—N2—O3 73.09 (14)
C8—C9—C10—N1 0.00 (15) C8—C11—N2—O3 −49.61 (12)
C7—C8—C11—N2 −81.54 (13) C10—C9—O3—N2 84.42 (12)
C9—C8—C11—N2 30.87 (13) C8—C9—O3—N2 −29.78 (13)
C7—C8—C11—C13 153.59 (12) C12—N2—O3—C9 170.81 (12)
C9—C8—C11—C13 −93.99 (14) C11—N2—O3—C9 50.71 (12)
N2—C11—C13—C14 109.49 (18) C15—C16—S1—C13 0.48 (14)
C8—C11—C13—C14 −135.77 (16) C17—C16—S1—C13 −178.30 (15)
N2—C11—C13—S1 −70.16 (16) C14—C13—S1—C16 −0.04 (13)
C8—C11—C13—S1 44.58 (17) C11—C13—S1—C16 179.67 (13)
C11—C13—C14—C15 179.92 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H18···O2i 0.94 (2) 2.41 (2) 3.103 (2) 130.0
C2—H2···Cg1ii 0.93 2.99 3.83 (2) 152 (1)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2634).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baldwin, S. W. & Aube, J. (1987). Tetrahedron Lett 28, 179–182.
  3. Banerji, A. & Basu, S. (1992). Tetrahedron, 48, 3335–3344.
  4. Banerji, A. & Sahu, A. J. (1986). Sci. Ind. Res 45, 355–369.
  5. Black, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205–221.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Heaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373–378.
  9. Mallesha, H., Ravikumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459–1461.
  10. Mallesha, H., Ravikumar, K. R. & Rangappa, K. S. (2001). Synthesis, 16, 2415–2418.
  11. Ochiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641–2648.
  12. Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, pp. 83–87. New York: John Wiley and Sons.
  13. Padwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc 103, 4974–4975.
  14. Padwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem 49, 282–288.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  17. Torsell, K. B. G. (1988). Nitrile Oxides, Nitrone and Nitronates in Organic Synthesis, pp. 75–93. New York: VCH.
  18. Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 277–312. New York: John Wiley and Sons.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009209/hk2634sup1.cif

e-65-0o862-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009209/hk2634Isup2.hkl

e-65-0o862-Isup2.hkl (163.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES