Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):o923. doi: 10.1107/S1600536809010988

Ethyl 6-methyl­sulfanyl-2-phenyl-1H-imidazo[1,2-b]pyrazole-7-carboxyl­ate monohydrate

Teng-fei Shao a, Gui-long Zhao a, Jian-wu Wang a,*
PMCID: PMC2968784  PMID: 21582625

Abstract

The title compound, C15H15N3O2S·H2O, has been obtained in a search for new imidazo[1,2-b]pyrazole derivatives with better biological activity. The 1H-imidazo[1,2-b]pyrazole plane forms a dihedral angle of 16.90 (3)° with the benzene ring. π–π inter­actions are indicated by the short distance of 3.643 (2) Å between the centroids of the benzene and imidazole rings. The crystal structure also involves inter­molecular O—H⋯N hydrogen bonds.

Related literature

For the biological activity of imidazo[1,2-b]pyrazole derivatives, see: Vanotti et al. (1994); Kinnamon et al. (2000); Li et al. (2005). For bond-length data, see: Allen et al., 1987.graphic file with name e-65-0o923-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O2S·H2O

  • M r = 319.38

  • Orthorhombic, Inline graphic

  • a = 19.017 (2) Å

  • b = 5.4854 (7) Å

  • c = 15.2314 (18) Å

  • V = 1588.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 273 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.957, T max = 0.978

  • 8763 measured reflections

  • 3326 independent reflections

  • 1877 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.094

  • S = 0.97

  • 3326 reflections

  • 207 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1442 Friedel pairs

  • Flack parameter: −0.01 (9)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010988/hg2495sup1.cif

e-65-0o923-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010988/hg2495Isup2.hkl

e-65-0o923-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N3i 0.99 (6) 1.86 (6) 2.809 (4) 160 (5)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Imidazo[1,2-b]pyrazole derivatives have been reported to show various biological activities [Vanotti et al., 1994; Kinnamon et al., 2000], in continuation of our research interest in this field [Li et al., 2005], the new title compound has been synthesized in a search for new compounds with better biological activity, and its crystal structure was determined by X-ray diffraction method.

The title compound crystallizes as a monohydrate (Fig. 1), all bond lengths are normal and in a good agreement with those reported previously (Allen et al., 1987). Atoms S1/O1/O2/C12/C13/C14 lie in 1H-imidazo[1,2-b]pyrazole (C7—C11/N1/N2/N3) plane with maximum least squares plane deviation for C14 0.070 (3) Å. The 1H-imidazo[1,2-b]pyrazole plane forms dihedral angles of 16.90 (3)° with the benzene ring (C1—C6). π-π stacking interactions (Table 1) are present in the structure. The crystal structure involves intermolecular are O–H···N hydrogen bonds.

Experimental

A suspended solution in 30 ml of acetonitrile containing 5 mmol (1.01 g) of ethyl 5-amino-3-methylthio-1H-pyrazole-4-carboxylate, 5 mmol (1.00) of α-bromoacetophenone and 10 mmol (1.38 g) of sodium carbonate was refluxed for about 10 h until the starting materials were consumed completely, as indicated by TLC. On cooling, the solid was removed through filtration, and the filtrate was evaporated to afford a residue, which was dissolved in 30 ml of absolute ethanol, followed by the addition of several drops of concentrated hydrochloric acid. The resulting solution was then refluxed for about 3 h, and cooled to room temperature. The solution was then evaporated in vacuo to afford the crude product, which was purified by column chromatography using ethyl acetate/petroleum ether (1:5) to give 0.87 g of pure title compound. Crystals suitable for X-ray diffraction were obtained from slow evaporation of a solution of the title compound in dichloromethane/ethyl acetate/petroleum ether (1/2/1) at room temperature.

Refinement

All H atoms were found on difference maps. The water H atoms were refined freely, giving 0.85 (6) and 0.99 (6)Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C, N) and 1.5Ueq(C) for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C15H15N3O2S·H2O F(000) = 672
Mr = 319.38 Dx = 1.335 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 1077 reflections
a = 19.017 (2) Å θ = 2.5–18.0°
b = 5.4854 (7) Å µ = 0.22 mm1
c = 15.2314 (18) Å T = 273 K
V = 1588.9 (3) Å3 Block, colorless
Z = 4 0.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3326 independent reflections
Radiation source: fine-focus sealed tube 1877 reflections with I > 2σ(I)
graphite Rint = 0.051
φ and ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→17
Tmin = 0.957, Tmax = 0.978 k = −7→6
8763 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0345P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
3326 reflections Δρmax = 0.15 e Å3
207 parameters Δρmin = −0.14 e Å3
1 restraint Absolute structure: Flack (1983), 1442 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.09788 (5) −0.14517 (15) 0.84062 (6) 0.0691 (3)
O1 0.15780 (12) 0.2624 (4) 0.58697 (15) 0.0736 (7)
O2 0.09476 (11) −0.0245 (4) 0.65679 (14) 0.0650 (6)
O3 0.2436 (2) 0.6611 (6) 0.55376 (16) 0.0945 (10)
H3A 0.275 (3) 0.647 (9) 0.502 (4) 0.16 (2)*
H3C 0.223 (3) 0.523 (10) 0.551 (3) 0.15 (2)*
N1 0.25532 (13) 0.5824 (4) 0.73178 (16) 0.0526 (7)
H1A 0.2568 0.6315 0.6782 0.063*
N2 0.22812 (12) 0.3832 (5) 0.84912 (16) 0.0525 (6)
N3 0.19001 (14) 0.2003 (5) 0.88960 (15) 0.0577 (7)
C1 0.34450 (18) 1.0192 (6) 0.7130 (2) 0.0603 (9)
H1B 0.3120 0.9869 0.6689 0.072*
C2 0.3920 (2) 1.2072 (6) 0.7024 (2) 0.0719 (11)
H2A 0.3909 1.3011 0.6516 0.086*
C3 0.4406 (2) 1.2562 (7) 0.7662 (3) 0.0738 (10)
H3B 0.4727 1.3824 0.7588 0.089*
C4 0.4416 (2) 1.1188 (7) 0.8405 (3) 0.0839 (10)
H4A 0.4748 1.1508 0.8838 0.101*
C5 0.39376 (19) 0.9320 (6) 0.8522 (3) 0.0759 (10)
H5A 0.3947 0.8413 0.9038 0.091*
C6 0.34440 (16) 0.8779 (6) 0.7882 (2) 0.0512 (8)
C7 0.29409 (17) 0.6804 (5) 0.8010 (2) 0.0527 (8)
C8 0.27674 (16) 0.5545 (6) 0.8748 (2) 0.0544 (9)
H8A 0.2942 0.5792 0.9312 0.065*
C9 0.21516 (17) 0.3985 (6) 0.76236 (19) 0.0490 (8)
C10 0.15369 (15) 0.1013 (5) 0.8233 (2) 0.0511 (8)
C11 0.16699 (17) 0.2151 (5) 0.7410 (2) 0.0502 (8)
C12 0.14107 (16) 0.1594 (6) 0.6547 (2) 0.0542 (8)
C13 0.0647 (2) −0.1008 (7) 0.5744 (2) 0.0850 (12)
H13A 0.1009 −0.1654 0.5360 0.102*
H13B 0.0422 0.0358 0.5452 0.102*
C14 0.0120 (2) −0.2929 (7) 0.5953 (3) 0.0986 (13)
H14A −0.0095 −0.3494 0.5421 0.148*
H14B −0.0235 −0.2265 0.6333 0.148*
H14C 0.0349 −0.4267 0.6242 0.148*
C15 0.1101 (2) −0.1931 (7) 0.9562 (3) 0.0873 (13)
H15A 0.0816 −0.3276 0.9751 0.131*
H15B 0.0966 −0.0488 0.9876 0.131*
H15C 0.1587 −0.2285 0.9677 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0711 (6) 0.0678 (5) 0.0682 (6) −0.0051 (5) 0.0093 (5) 0.0161 (5)
O1 0.0939 (19) 0.0829 (16) 0.0440 (12) −0.0255 (15) −0.0010 (14) 0.0096 (12)
O2 0.0703 (14) 0.0722 (15) 0.0526 (14) −0.0146 (14) −0.0035 (12) 0.0025 (12)
O3 0.131 (3) 0.107 (3) 0.0453 (15) −0.041 (2) 0.0042 (15) 0.0143 (15)
N1 0.0628 (17) 0.0571 (16) 0.0377 (15) 0.0017 (14) −0.0024 (13) 0.0054 (14)
N2 0.0642 (17) 0.0573 (16) 0.0359 (15) 0.0048 (13) −0.0019 (14) 0.0087 (13)
N3 0.0700 (19) 0.0583 (16) 0.0448 (16) −0.0010 (15) 0.0068 (15) 0.0150 (14)
C1 0.057 (2) 0.067 (2) 0.056 (2) −0.0041 (19) −0.0011 (16) 0.0014 (18)
C2 0.082 (3) 0.074 (3) 0.060 (2) −0.006 (2) 0.013 (2) 0.007 (2)
C3 0.070 (2) 0.076 (2) 0.076 (3) −0.015 (2) 0.010 (2) −0.010 (2)
C4 0.089 (3) 0.088 (3) 0.075 (3) −0.019 (2) −0.015 (3) −0.003 (3)
C5 0.088 (3) 0.077 (2) 0.062 (2) −0.011 (2) −0.018 (2) 0.006 (2)
C6 0.054 (2) 0.0534 (18) 0.046 (2) 0.0094 (16) 0.0014 (15) −0.0006 (15)
C7 0.060 (2) 0.0549 (19) 0.0435 (19) 0.0042 (17) −0.0012 (17) 0.0009 (17)
C8 0.062 (2) 0.060 (2) 0.0403 (18) 0.0040 (18) −0.0048 (15) 0.0020 (16)
C9 0.0551 (19) 0.056 (2) 0.0365 (18) 0.0079 (17) 0.0028 (15) 0.0095 (16)
C10 0.0534 (19) 0.0508 (18) 0.049 (2) 0.0074 (15) 0.0022 (15) 0.0050 (16)
C11 0.057 (2) 0.054 (2) 0.0405 (17) 0.0023 (17) 0.0057 (16) 0.0049 (16)
C12 0.055 (2) 0.055 (2) 0.053 (2) 0.0005 (17) 0.0055 (17) 0.0062 (18)
C13 0.087 (3) 0.101 (3) 0.066 (3) −0.026 (2) −0.005 (2) −0.011 (2)
C14 0.108 (3) 0.094 (3) 0.095 (3) −0.043 (3) 0.001 (3) −0.013 (2)
C15 0.107 (3) 0.089 (3) 0.067 (3) −0.005 (2) 0.026 (2) 0.027 (2)

Geometric parameters (Å, °)

S1—C10 1.739 (3) C3—H3B 0.9300
S1—C15 1.795 (4) C4—C5 1.382 (4)
O1—C12 1.219 (4) C4—H4A 0.9300
O2—C12 1.339 (3) C5—C6 1.385 (4)
O2—C13 1.442 (4) C5—H5A 0.9300
O3—H3A 0.99 (6) C6—C7 1.459 (4)
O3—H3C 0.85 (6) C7—C8 1.359 (4)
N1—C9 1.348 (3) C8—H8A 0.9300
N1—C7 1.395 (4) C9—C11 1.399 (4)
N1—H1A 0.8600 C10—C11 1.423 (4)
N2—C9 1.347 (4) C11—C12 1.436 (4)
N2—C8 1.375 (4) C13—C14 1.489 (5)
N2—N3 1.383 (3) C13—H13A 0.9700
N3—C10 1.339 (4) C13—H13B 0.9700
C1—C2 1.380 (4) C14—H14A 0.9600
C1—C6 1.383 (4) C14—H14B 0.9600
C1—H1B 0.9300 C14—H14C 0.9600
C2—C3 1.368 (5) C15—H15A 0.9600
C2—H2A 0.9300 C15—H15B 0.9600
C3—C4 1.360 (5) C15—H15C 0.9600
Cg1···Cg2i 3.643 (2)
C10—S1—C15 100.60 (17) C7—C8—H8A 127.0
C12—O2—C13 117.3 (3) N2—C8—H8A 127.0
H3A—O3—H3C 99 (4) N2—C9—N1 106.4 (3)
C9—N1—C7 109.0 (3) N2—C9—C11 107.7 (3)
C9—N1—H1A 125.5 N1—C9—C11 146.0 (3)
C7—N1—H1A 125.5 N3—C10—C11 113.3 (3)
C9—N2—C8 111.1 (3) N3—C10—S1 121.0 (2)
C9—N2—N3 112.8 (3) C11—C10—S1 125.7 (2)
C8—N2—N3 136.2 (3) C9—C11—C10 103.1 (3)
C10—N3—N2 103.2 (2) C9—C11—C12 126.2 (3)
C2—C1—C6 121.1 (3) C10—C11—C12 130.6 (3)
C2—C1—H1B 119.4 O1—C12—O2 122.7 (3)
C6—C1—H1B 119.4 O1—C12—C11 125.9 (3)
C3—C2—C1 120.4 (3) O2—C12—C11 111.4 (3)
C3—C2—H2A 119.8 O2—C13—C14 106.6 (3)
C1—C2—H2A 119.8 O2—C13—H13A 110.4
C4—C3—C2 119.5 (4) C14—C13—H13A 110.4
C4—C3—H3B 120.3 O2—C13—H13B 110.4
C2—C3—H3B 120.3 C14—C13—H13B 110.4
C3—C4—C5 120.6 (4) H13A—C13—H13B 108.6
C3—C4—H4A 119.7 C13—C14—H14A 109.5
C5—C4—H4A 119.7 C13—C14—H14B 109.5
C4—C5—C6 120.9 (4) H14A—C14—H14B 109.5
C4—C5—H5A 119.5 C13—C14—H14C 109.5
C6—C5—H5A 119.5 H14A—C14—H14C 109.5
C1—C6—C5 117.5 (3) H14B—C14—H14C 109.5
C1—C6—C7 121.9 (3) S1—C15—H15A 109.5
C5—C6—C7 120.6 (3) S1—C15—H15B 109.5
C8—C7—N1 107.5 (3) H15A—C15—H15B 109.5
C8—C7—C6 130.3 (3) S1—C15—H15C 109.5
N1—C7—C6 122.1 (3) H15A—C15—H15C 109.5
C7—C8—N2 106.0 (3) H15B—C15—H15C 109.5
C9—N2—N3—C10 0.9 (3) N3—N2—C9—C11 −1.2 (3)
C8—N2—N3—C10 −178.6 (3) C7—N1—C9—N2 0.5 (3)
C6—C1—C2—C3 0.6 (5) C7—N1—C9—C11 −177.5 (4)
C1—C2—C3—C4 −0.3 (5) N2—N3—C10—C11 −0.2 (3)
C2—C3—C4—C5 −0.5 (6) N2—N3—C10—S1 178.80 (19)
C3—C4—C5—C6 1.0 (6) C15—S1—C10—N3 −0.8 (3)
C2—C1—C6—C5 −0.1 (5) C15—S1—C10—C11 178.0 (3)
C2—C1—C6—C7 179.2 (3) N2—C9—C11—C10 1.0 (3)
C4—C5—C6—C1 −0.7 (5) N1—C9—C11—C10 179.0 (4)
C4—C5—C6—C7 179.9 (3) N2—C9—C11—C12 −177.1 (3)
C9—N1—C7—C8 −0.4 (3) N1—C9—C11—C12 0.9 (7)
C9—N1—C7—C6 178.0 (2) N3—C10—C11—C9 −0.5 (3)
C1—C6—C7—C8 −165.9 (3) S1—C10—C11—C9 −179.5 (2)
C5—C6—C7—C8 13.5 (5) N3—C10—C11—C12 177.5 (3)
C1—C6—C7—N1 16.2 (4) S1—C10—C11—C12 −1.4 (5)
C5—C6—C7—N1 −164.4 (3) C13—O2—C12—O1 0.4 (4)
N1—C7—C8—N2 0.1 (3) C13—O2—C12—C11 −179.7 (3)
C6—C7—C8—N2 −178.1 (3) C9—C11—C12—O1 0.8 (5)
C9—N2—C8—C7 0.2 (3) C10—C11—C12—O1 −176.9 (3)
N3—N2—C8—C7 179.7 (3) C9—C11—C12—O2 −179.1 (3)
C8—N2—C9—N1 −0.5 (3) C10—C11—C12—O2 3.2 (4)
N3—N2—C9—N1 179.9 (2) C12—O2—C13—C14 −176.1 (3)
C8—N2—C9—C11 178.4 (2)

Symmetry codes: (i) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N3ii 0.99 (6) 1.86 (6) 2.809 (4) 160 (5)

Symmetry codes: (ii) −x+1/2, y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2495).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Kinnamon, K. E., Engle, R. R., Poon, B. T., Ellis, W. Y., McCall, J. W. & Pzimianski, M. T. (2000). Proc. Soc. Exp. Biol. Med.224, 45–49. [DOI] [PubMed]
  6. Li, M., Zhao, G. L., Wen, L., Cai, W., Zhang, S. S. & Yang, H. Z. (2005). J. Heterocycl. Chem 42, 209–214.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Vanotti, E., Fiorentini, F. & Villa, M. (1994). J. Heterocycl. Chem.31, 737–743.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010988/hg2495sup1.cif

e-65-0o923-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010988/hg2495Isup2.hkl

e-65-0o923-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES