Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o694. doi: 10.1107/S1600536809007648

2,6-Bis(2-chloro­benzyl­idene)cyclo­hexanone

Deyun Liu a,*
PMCID: PMC2968786  PMID: 21582435

Abstract

In the title mol­ecule, C20H16Cl2O, the central cyclo­hexa­none ring adopts an envelope conformation. The two aromatic rings form a dihedral angle of 30.0 (1)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and short Cl⋯O contacts [3.213 (3) Å].

Related literature

For general background, see: Tanaka & Toda (2000). For a similar crystal structure, see: Brinda et al. (2007).graphic file with name e-65-0o694-scheme1.jpg

Experimental

Crystal data

  • C20H16Cl2O

  • M r = 343.23

  • Orthorhombic, Inline graphic

  • a = 14.4004 (15) Å

  • b = 8.1553 (10) Å

  • c = 28.593 (3) Å

  • V = 3358.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.42 × 0.32 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.854, T max = 0.937

  • 13876 measured reflections

  • 2962 independent reflections

  • 1762 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.124

  • S = 1.06

  • 2962 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007648/cv2518sup1.cif

e-65-0o694-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007648/cv2518Isup2.hkl

e-65-0o694-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.93 2.51 3.352 (4) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the Foundation of Liaocheng Vocational and Technical College.

supplementary crystallographic information

Comment

Development of new solid phase (solvent-free) reactions and transferring solution phase reactions to solid phase are subjects of recent interest in the context of generating libraries of molecules for the discovery of biologically active leads and also for the optimization of potent drug candidates (Tanaka & Toda, 2000).

In this paper, we describe the synthesis of the title compound, (I), starting from the fragrant aldehydes and cyclohexanone in the presence of NaOH under solvent-free conditions. This method can be considered as a general method for the synthesis of benzylidene cyclohexanones.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in 4-methyl-2,6-bis(2-naphthylmethylene) cyclohexan-1-one (Brinda et al., 2007). The central cyclohexanone ring adopts an envelope conformation, the dihedral angles between the rings C8-C13 and C15-C20 is 30.0 (1)°.

The crystal packing exhibits short Cl···O contacts (Table 1) and weak intermolecular C—H···O hydrogen bonds (Table 2).

Experimental

2-Chlorobenzaldehyde (2 mmol) and cyclohexanone (1.0 mmol), NaOH (2.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring 15 min at 293 K, tthe resulting mixture was washed with water for several times for removing NaOH, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calcd. for C20H26Cl2O: C 69.98, H 4.70%; found: C 69.93, H 4.65%.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C20H16Cl2O Dx = 1.358 Mg m3
Mr = 343.23 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 2653 reflections
a = 14.4004 (15) Å θ = 2.8–43.8°
b = 8.1553 (10) Å µ = 0.39 mm1
c = 28.593 (3) Å T = 298 K
V = 3358.0 (6) Å3 Needle, colourless
Z = 8 0.42 × 0.32 × 0.17 mm
F(000) = 1424

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2962 independent reflections
Radiation source: fine-focus sealed tube 1762 reflections with I > 2σ(I)
graphite Rint = 0.064
phi and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→17
Tmin = 0.854, Tmax = 0.937 k = −8→9
13876 measured reflections l = −29→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0353P)2 + 3.2692P] where P = (Fo2 + 2Fc2)/3
2962 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.01278 (6) 1.01596 (12) 0.34622 (3) 0.0568 (3)
Cl2 0.72695 (8) 0.83897 (15) 0.07162 (3) 0.0783 (4)
O1 0.86474 (15) 0.7337 (3) 0.22424 (7) 0.0515 (7)
C1 0.7861 (2) 0.7354 (4) 0.24087 (10) 0.0342 (8)
C2 0.7724 (2) 0.7802 (4) 0.29170 (10) 0.0347 (8)
C3 0.6741 (2) 0.8022 (5) 0.30951 (11) 0.0472 (9)
H3A 0.6726 0.8954 0.3306 0.057*
H3B 0.6567 0.7058 0.3273 0.057*
C4 0.6032 (2) 0.8289 (5) 0.27104 (11) 0.0455 (9)
H4A 0.6145 0.9334 0.2559 0.055*
H4B 0.5413 0.8313 0.2844 0.055*
C5 0.6099 (2) 0.6916 (4) 0.23542 (11) 0.0399 (8)
H5A 0.6006 0.5870 0.2509 0.048*
H5B 0.5615 0.7046 0.2122 0.048*
C6 0.7032 (2) 0.6928 (4) 0.21178 (10) 0.0335 (7)
C7 0.8490 (2) 0.8002 (4) 0.31767 (10) 0.0412 (8)
H7 0.9051 0.7861 0.3020 0.049*
C8 0.8563 (2) 0.8412 (5) 0.36743 (11) 0.0458 (9)
C9 0.9282 (2) 0.9410 (5) 0.38404 (11) 0.0485 (9)
C10 0.9346 (3) 0.9856 (6) 0.43068 (13) 0.0654 (12)
H10 0.9817 1.0555 0.4406 0.078*
C11 0.8710 (3) 0.9260 (7) 0.46211 (14) 0.0806 (15)
H11 0.8753 0.9550 0.4935 0.097*
C12 0.8011 (3) 0.8238 (7) 0.44739 (14) 0.0836 (15)
H12 0.7585 0.7832 0.4689 0.100*
C13 0.7935 (3) 0.7809 (6) 0.40090 (12) 0.0626 (12)
H13 0.7461 0.7108 0.3915 0.075*
C14 0.7172 (2) 0.6681 (4) 0.16580 (11) 0.0399 (8)
H14 0.7776 0.6812 0.1549 0.048*
C15 0.6467 (2) 0.6227 (4) 0.13110 (10) 0.0382 (8)
C16 0.6448 (2) 0.6917 (4) 0.08648 (11) 0.0444 (9)
C17 0.5785 (3) 0.6500 (5) 0.05364 (12) 0.0561 (10)
H17 0.5785 0.7002 0.0244 0.067*
C18 0.5126 (3) 0.5339 (5) 0.06440 (13) 0.0610 (11)
H18 0.4672 0.5062 0.0426 0.073*
C19 0.5141 (3) 0.4588 (5) 0.10758 (13) 0.0588 (11)
H19 0.4707 0.3781 0.1146 0.071*
C20 0.5795 (2) 0.5029 (4) 0.14024 (11) 0.0461 (9)
H20 0.5791 0.4515 0.1693 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0448 (5) 0.0640 (7) 0.0615 (6) −0.0018 (5) −0.0062 (5) −0.0015 (5)
Cl2 0.1071 (9) 0.0832 (8) 0.0447 (5) −0.0501 (7) −0.0081 (6) 0.0118 (5)
O1 0.0311 (14) 0.086 (2) 0.0376 (13) −0.0010 (13) 0.0065 (11) 0.0017 (12)
C1 0.0311 (19) 0.037 (2) 0.0346 (17) 0.0016 (15) 0.0042 (15) 0.0061 (14)
C2 0.0328 (19) 0.038 (2) 0.0338 (17) −0.0009 (15) 0.0062 (14) 0.0039 (14)
C3 0.038 (2) 0.060 (3) 0.0431 (19) −0.0041 (18) 0.0083 (16) −0.0082 (17)
C4 0.0317 (19) 0.051 (2) 0.054 (2) 0.0072 (16) 0.0020 (16) −0.0050 (18)
C5 0.0316 (19) 0.046 (2) 0.0419 (18) −0.0017 (16) 0.0002 (15) 0.0013 (16)
C6 0.0296 (18) 0.037 (2) 0.0336 (17) 0.0031 (14) 0.0025 (14) 0.0066 (14)
C7 0.032 (2) 0.054 (2) 0.0376 (18) 0.0038 (16) 0.0037 (15) 0.0027 (16)
C8 0.045 (2) 0.058 (2) 0.0338 (18) 0.0056 (18) −0.0014 (16) −0.0029 (17)
C9 0.050 (2) 0.055 (3) 0.040 (2) 0.0114 (19) −0.0070 (17) −0.0024 (17)
C10 0.068 (3) 0.078 (3) 0.050 (2) 0.011 (2) −0.011 (2) −0.014 (2)
C11 0.085 (4) 0.120 (4) 0.036 (2) 0.017 (3) −0.008 (2) −0.015 (3)
C12 0.076 (3) 0.134 (5) 0.041 (2) 0.001 (3) 0.010 (2) 0.007 (3)
C13 0.058 (3) 0.091 (3) 0.039 (2) −0.003 (2) 0.0029 (19) 0.006 (2)
C14 0.0346 (19) 0.045 (2) 0.0405 (19) −0.0006 (16) 0.0013 (15) 0.0063 (16)
C15 0.0365 (19) 0.044 (2) 0.0337 (17) 0.0016 (16) 0.0025 (15) −0.0040 (15)
C16 0.058 (2) 0.041 (2) 0.0345 (18) −0.0080 (18) 0.0020 (16) −0.0019 (15)
C17 0.077 (3) 0.060 (3) 0.0318 (18) −0.007 (2) −0.0099 (19) −0.0037 (18)
C18 0.062 (3) 0.070 (3) 0.051 (2) −0.014 (2) −0.010 (2) −0.015 (2)
C19 0.054 (2) 0.066 (3) 0.056 (2) −0.018 (2) 0.004 (2) −0.009 (2)
C20 0.049 (2) 0.053 (2) 0.0370 (18) −0.0034 (19) 0.0034 (16) 0.0057 (17)

Geometric parameters (Å, °)

Cl1—C9 1.739 (4) C9—C10 1.385 (5)
Cl2—C16 1.738 (3) C10—C11 1.372 (6)
O1—C1 1.228 (3) C10—H10 0.9300
C1—C6 1.496 (4) C11—C12 1.374 (6)
C1—C2 1.511 (4) C11—H11 0.9300
C2—C7 1.340 (4) C12—C13 1.379 (5)
C2—C3 1.514 (4) C12—H12 0.9300
C3—C4 1.517 (4) C13—H13 0.9300
C3—H3A 0.9700 C14—C15 1.467 (4)
C3—H3B 0.9700 C14—H14 0.9300
C4—C5 1.517 (4) C15—C16 1.395 (4)
C4—H4A 0.9700 C15—C20 1.400 (4)
C4—H4B 0.9700 C16—C17 1.381 (5)
C5—C6 1.504 (4) C17—C18 1.376 (5)
C5—H5A 0.9700 C17—H17 0.9300
C5—H5B 0.9700 C18—C19 1.378 (5)
C6—C14 1.345 (4) C18—H18 0.9300
C7—C8 1.465 (4) C19—C20 1.374 (5)
C7—H7 0.9300 C19—H19 0.9300
C8—C9 1.400 (5) C20—H20 0.9300
C8—C13 1.405 (5)
Cl1···O1i 3.213 (3)
C9—Cl1—O1i 165.55 (13) C10—C9—Cl1 117.4 (3)
O1—C1—C6 121.2 (3) C8—C9—Cl1 120.8 (3)
O1—C1—C2 119.7 (3) C11—C10—C9 119.6 (4)
C6—C1—C2 119.1 (3) C11—C10—H10 120.2
C7—C2—C1 117.0 (3) C9—C10—H10 120.2
C7—C2—C3 124.7 (3) C10—C11—C12 120.2 (4)
C1—C2—C3 118.3 (3) C10—C11—H11 119.9
C2—C3—C4 113.7 (3) C12—C11—H11 119.9
C2—C3—H3A 108.8 C11—C12—C13 120.5 (4)
C4—C3—H3A 108.8 C11—C12—H12 119.8
C2—C3—H3B 108.8 C13—C12—H12 119.8
C4—C3—H3B 108.8 C12—C13—C8 121.1 (4)
H3A—C3—H3B 107.7 C12—C13—H13 119.4
C3—C4—C5 109.8 (3) C8—C13—H13 119.4
C3—C4—H4A 109.7 C6—C14—C15 126.6 (3)
C5—C4—H4A 109.7 C6—C14—H14 116.7
C3—C4—H4B 109.7 C15—C14—H14 116.7
C5—C4—H4B 109.7 C16—C15—C20 116.0 (3)
H4A—C4—H4B 108.2 C16—C15—C14 122.0 (3)
C6—C5—C4 110.7 (3) C20—C15—C14 121.9 (3)
C6—C5—H5A 109.5 C17—C16—C15 122.4 (3)
C4—C5—H5A 109.5 C17—C16—Cl2 118.3 (3)
C6—C5—H5B 109.5 C15—C16—Cl2 119.3 (3)
C4—C5—H5B 109.5 C18—C17—C16 119.6 (3)
H5A—C5—H5B 108.1 C18—C17—H17 120.2
C14—C6—C1 117.4 (3) C16—C17—H17 120.2
C14—C6—C5 124.9 (3) C17—C18—C19 119.7 (3)
C1—C6—C5 117.7 (3) C17—C18—H18 120.2
C2—C7—C8 128.7 (3) C19—C18—H18 120.2
C2—C7—H7 115.7 C20—C19—C18 120.2 (4)
C8—C7—H7 115.7 C20—C19—H19 119.9
C9—C8—C13 116.6 (3) C18—C19—H19 119.9
C9—C8—C7 121.0 (3) C19—C20—C15 122.0 (3)
C13—C8—C7 122.4 (3) C19—C20—H20 119.0
C10—C9—C8 121.9 (4) C15—C20—H20 119.0

Symmetry codes: (i) −x+2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H20···O1ii 0.93 2.51 3.352 (4) 151

Symmetry codes: (ii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2518).

References

  1. Brinda, Mudakavi, R., Chopra, D., Murthy, M. S. & Row, T. N. G. (2007). Acta Cryst. E63, o4494.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
  5. Tanaka, T. & Toda, F. (2000). Chem. Rev 100, 1025–1074. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007648/cv2518sup1.cif

e-65-0o694-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007648/cv2518Isup2.hkl

e-65-0o694-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES