Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m438. doi: 10.1107/S1600536809010265

(Benzonitrile-κN)chlorido[hydrido­tris(pyrazol-1-yl-κN 2)borato](triphenyl­phosphine-κP)ruthenium(II) ethanol solvate

Hung-Chun Tong a, Yu-Chen Hung a, Po-Yo Wang b, Chia-Her Lin c, Yih-Hsing Lo b,*
PMCID: PMC2968787  PMID: 21582375

Abstract

The reaction of [Ru(C9H10BN6)Cl(C18H15P)2] with benzo­nitrile leads to crystals of the title compound, [Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H5OH. In the crystal structure, the environment about the ruthenium metal center corresponds to a slightly distorted octa­hedron with an average N—Ru—N bite angle of the Tp ligand of 86.6 (2)°.

Related literature

For general background to the hydridotris(pyrazoly)borate anion and its use in the preparation of various transition metal complexes, see: Alcock et al. (1992); Burrows et al. (2001); Pavlik et al. (2005); Slugovc et al. (1998); Trofimenko (1993). For Ru—N distances in other hydridotripyrazolyl­borate complexes, see: Gemel et al. (1996); Slugovc et al. (1998).graphic file with name e-65-0m438-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6O

  • M r = 761.02

  • Triclinic, Inline graphic

  • a = 8.0008 (5) Å

  • b = 11.0195 (5) Å

  • c = 19.4246 (11) Å

  • α = 83.438 (4)°

  • β = 88.726 (4)°

  • γ = 88.920 (4)°

  • V = 1700.70 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 200 K

  • 0.24 × 0.08 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.864, T max = 0.988

  • 13842 measured reflections

  • 5819 independent reflections

  • 3804 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.122

  • S = 1.04

  • 5819 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010265/nc2139sup1.cif

e-65-0m438-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010265/nc2139Isup2.hkl

e-65-0m438-Isup2.hkl (279.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part from the Project of the Specific Research Fields in Taipei Municipal University of Education, Taiwan. We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University, Taiwan) for his assistance with the crystal structure analysis and the Project of the Specific Research Fields in Chung Yuan Christian University, Taiwan for support (grant CYCU-97-CR—CH).

supplementary crystallographic information

Comment

Hydridotris(pyrazoly)borate anion (Tp,HB(pz)3) has been introduced by Trofimenko as a ligand in the preparation of various transition metal complexes (Trofimenko, 1993). Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alcock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphine substitutents (Burrows, 2001). On the other hand, Benzonitrile can form coordination complex with late transition metals that are both soluble in organic solvents and conveniently labile, e.g. PdCl2(PhCN)2. The benzonitrile ligands are readily displaced by stronger ligands, making benzonitrile complexes useful as synthetic intermediates.

In the crystal structure of the title compound the ruthenium metal center is coordinated by four N, one P and one Cl atom within slightly distorted octahedra. The average N—Ru—N bite angle to the Tp ligand amount to 86.6 (2)°. The three Ru—N(Tp) bond lengths of 2.063 (5), 2.069 (4) and 2.102 (5) Å) are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru1—N7 and N7—C28 bond lengths of 1.991 (5) Å and 1.144 (7)Å correspond to single Ru—N and C≡N bonds. The crystal structure conatin additional ethanol molecules, which are connected to the chloro atom via weak O-H···Cl hydrogen bonding.

Experimental

To a solution of [Ru(Tp)Cl(PPh3)2](3.95 g,4.50 mmol) in toulene (100 ml), an excess of benzonitrile (4.6 ml, 45.0 mmol) was added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried was dried under vacuum to give the title compound (I) (2.09 g, 65% yield).The bright-yellow crystals of (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ethanol containing free benzonitrile. The IR spectra display one medium band near 2214 cm-1, which was assigned to the ν(CN) vibration of the nitrile ligand. We have observed that the benzonitrile is lost readily in solution. Therefore, in all perations for the purification of the title compound, an excess of free nitrile was added in order to prevent the nitrile ligand dissociation.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B), and O—H = 0.84 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Crystal data

[Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6O Z = 2
Mr = 761.02 F(000) = 780
Triclinic, P1 Dx = 1.486 Mg m3
a = 8.0008 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.0195 (5) Å Cell parameters from 0 reflections
c = 19.4246 (11) Å θ = 0–0°
α = 83.438 (4)° µ = 0.63 mm1
β = 88.726 (4)° T = 200 K
γ = 88.920 (4)° Prism, yellow
V = 1700.70 (16) Å3 0.24 × 0.08 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer 5819 independent reflections
Radiation source: fine-focus sealed tube 3804 reflections with I > 2σ(I)
graphite Rint = 0.080
Detector resolution: 9 pixels mm-1 θmax = 25.0°, θmin = 1.9°
CCD rotation images, thick slices scans h = −7→9
Absorption correction: multi-scan (Blessing, 1995) k = −12→13
Tmin = 0.864, Tmax = 0.988 l = −21→23
13842 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0432P)2] where P = (Fo2 + 2Fc2)/3
5819 reflections (Δ/σ)max = 0.001
433 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
B1 0.6437 (8) 1.1216 (6) 0.8145 (4) 0.0217 (17)
H1' 0.6412 1.1988 0.8370 0.026*
C1 0.4057 (7) 0.8541 (6) 0.8752 (3) 0.0250 (15)
H1 0.3660 0.7746 0.8709 0.030*
C2 0.3573 (8) 0.9230 (6) 0.9274 (3) 0.0307 (17)
H2 0.2812 0.9014 0.9648 0.037*
C3 0.4430 (8) 1.0291 (6) 0.9132 (3) 0.0292 (17)
H3 0.4369 1.0963 0.9399 0.035*
C4 1.0191 (7) 0.9563 (5) 0.7700 (3) 0.0235 (15)
H4 1.0754 0.8911 0.7507 0.028*
C5 1.0975 (8) 1.0535 (5) 0.7936 (3) 0.0295 (17)
H5 1.2141 1.0685 0.7933 0.035*
C6 0.9697 (8) 1.1240 (6) 0.8178 (3) 0.0298 (17)
H6 0.9830 1.1977 0.8379 0.036*
C7 0.4995 (7) 1.0900 (5) 0.6428 (3) 0.0218 (15)
H7 0.4781 1.0420 0.6064 0.026*
C8 0.4638 (7) 1.2139 (6) 0.6407 (3) 0.0305 (17)
H8 0.4164 1.2661 0.6037 0.037*
C9 0.5113 (7) 1.2444 (5) 0.7030 (3) 0.0232 (15)
H9 0.5017 1.3234 0.7179 0.028*
C10 0.8767 (7) 0.7020 (5) 0.8753 (3) 0.0194 (14)
C11 0.8356 (7) 0.7871 (5) 0.9212 (3) 0.0252 (15)
H11 0.7450 0.8428 0.9110 0.030*
C12 0.9232 (8) 0.7922 (6) 0.9807 (3) 0.0300 (17)
H12 0.8922 0.8506 1.0112 0.036*
C13 1.0560 (8) 0.7129 (6) 0.9964 (3) 0.0341 (18)
H13 1.1156 0.7152 1.0380 0.041*
C14 1.1002 (8) 0.6312 (6) 0.9513 (4) 0.0348 (18)
H14 1.1937 0.5781 0.9610 0.042*
C15 1.0116 (7) 0.6240 (6) 0.8916 (3) 0.0299 (17)
H15 1.0436 0.5651 0.8615 0.036*
C16 0.5928 (7) 0.5768 (5) 0.8399 (3) 0.0199 (14)
C17 0.6134 (8) 0.5104 (5) 0.9041 (3) 0.0295 (16)
H17 0.7035 0.5290 0.9319 0.035*
C18 0.5063 (8) 0.4179 (6) 0.9288 (4) 0.0333 (17)
H18 0.5250 0.3731 0.9728 0.040*
C19 0.3743 (8) 0.3901 (5) 0.8908 (4) 0.0314 (17)
H19 0.3001 0.3270 0.9081 0.038*
C20 0.3503 (7) 0.4553 (5) 0.8265 (4) 0.0282 (17)
H20 0.2592 0.4361 0.7994 0.034*
C21 0.4563 (7) 0.5477 (5) 0.8013 (3) 0.0247 (15)
H21 0.4367 0.5921 0.7573 0.030*
C22 0.8730 (7) 0.5888 (5) 0.7502 (3) 0.0190 (14)
C23 0.8347 (8) 0.4663 (6) 0.7473 (3) 0.0335 (17)
H23 0.7423 0.4315 0.7736 0.040*
C24 0.9301 (8) 0.3950 (6) 0.7066 (4) 0.0367 (18)
H24 0.9018 0.3121 0.7050 0.044*
C25 1.0658 (8) 0.4430 (6) 0.6682 (4) 0.0336 (18)
H25 1.1293 0.3945 0.6394 0.040*
C26 1.1067 (8) 0.5612 (6) 0.6726 (3) 0.0285 (16)
H26 1.2012 0.5948 0.6473 0.034*
C27 1.0130 (7) 0.6332 (5) 0.7133 (3) 0.0256 (16)
H27 1.0454 0.7150 0.7159 0.031*
C28 0.8440 (8) 0.8522 (5) 0.6049 (3) 0.0220 (15)
C29 0.9322 (7) 0.8466 (5) 0.5402 (3) 0.0228 (15)
C30 1.1031 (8) 0.8200 (5) 0.5399 (4) 0.0330 (17)
H30 1.1607 0.8058 0.5824 0.040*
C31 1.1880 (8) 0.8145 (6) 0.4785 (4) 0.0381 (18)
H31 1.3041 0.7947 0.4783 0.046*
C32 1.1051 (9) 0.8377 (5) 0.4170 (4) 0.0345 (18)
H32 1.1648 0.8348 0.3743 0.041*
C33 0.9364 (9) 0.8650 (6) 0.4167 (4) 0.0363 (18)
H33 0.8802 0.8816 0.3740 0.044*
C34 0.8494 (8) 0.8681 (6) 0.4786 (3) 0.0314 (17)
H34 0.7325 0.8850 0.4787 0.038*
C35 0.6349 (12) 0.5821 (7) 0.5823 (4) 0.066 (3)
H35A 0.5575 0.5189 0.6037 0.079*
H35B 0.7123 0.6024 0.6182 0.079*
C36 0.7341 (11) 0.5337 (7) 0.5223 (5) 0.077 (3)
H36A 0.7981 0.4604 0.5399 0.115*
H36B 0.8110 0.5965 0.5016 0.115*
H36C 0.6566 0.5133 0.4871 0.115*
Cl1 0.40407 (18) 0.80198 (13) 0.69429 (8) 0.0259 (4)
N1 0.5147 (6) 0.9129 (4) 0.8316 (3) 0.0187 (12)
N2 0.5372 (6) 1.0235 (4) 0.8556 (3) 0.0216 (12)
N3 0.8537 (6) 0.9662 (4) 0.7779 (2) 0.0201 (12)
N4 0.8238 (6) 1.0713 (4) 0.8082 (3) 0.0218 (12)
N5 0.5673 (5) 1.0477 (4) 0.7025 (3) 0.0185 (12)
N6 0.5746 (6) 1.1432 (4) 0.7404 (3) 0.0213 (12)
N7 0.7767 (6) 0.8556 (4) 0.6573 (3) 0.0190 (12)
O2 0.5442 (7) 0.6869 (5) 0.5561 (3) 0.0617 (16)
H2' 0.4895 0.7142 0.5886 0.092*
P1 0.74469 (19) 0.68826 (14) 0.80077 (9) 0.0189 (4)
Ru1 0.65206 (6) 0.87432 (4) 0.74538 (3) 0.01676 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
B1 0.027 (4) 0.015 (4) 0.025 (5) 0.004 (3) −0.004 (4) −0.008 (3)
C1 0.022 (3) 0.027 (4) 0.026 (4) −0.002 (3) 0.000 (3) −0.002 (3)
C2 0.034 (4) 0.039 (4) 0.019 (4) 0.002 (3) 0.007 (3) 0.000 (3)
C3 0.031 (4) 0.040 (4) 0.018 (4) 0.014 (3) 0.003 (3) −0.014 (3)
C4 0.014 (3) 0.025 (4) 0.031 (4) 0.004 (3) −0.001 (3) 0.002 (3)
C5 0.021 (3) 0.034 (4) 0.034 (5) −0.004 (3) −0.010 (3) −0.001 (3)
C6 0.031 (4) 0.031 (4) 0.029 (4) −0.012 (3) −0.010 (3) −0.004 (3)
C7 0.024 (3) 0.023 (4) 0.019 (4) 0.001 (3) −0.007 (3) −0.004 (3)
C8 0.031 (4) 0.032 (4) 0.026 (4) 0.006 (3) −0.006 (3) 0.007 (3)
C9 0.022 (3) 0.012 (3) 0.034 (4) 0.000 (3) 0.001 (3) 0.002 (3)
C10 0.019 (3) 0.019 (3) 0.019 (4) −0.006 (3) −0.001 (3) 0.003 (3)
C11 0.024 (3) 0.029 (4) 0.022 (4) −0.001 (3) −0.003 (3) 0.002 (3)
C12 0.032 (4) 0.040 (4) 0.020 (4) −0.003 (3) 0.000 (3) −0.010 (3)
C13 0.032 (4) 0.050 (5) 0.019 (4) −0.002 (3) −0.009 (3) 0.002 (4)
C14 0.026 (4) 0.036 (4) 0.041 (5) 0.011 (3) −0.012 (4) 0.000 (4)
C15 0.029 (4) 0.033 (4) 0.027 (4) 0.006 (3) −0.007 (3) −0.003 (3)
C16 0.023 (3) 0.016 (3) 0.019 (4) 0.004 (3) 0.006 (3) 0.003 (3)
C17 0.033 (4) 0.028 (4) 0.027 (4) −0.007 (3) −0.004 (3) 0.002 (3)
C18 0.040 (4) 0.033 (4) 0.025 (4) −0.006 (3) 0.003 (4) 0.004 (3)
C19 0.032 (4) 0.024 (4) 0.036 (5) −0.005 (3) 0.011 (4) 0.005 (3)
C20 0.021 (3) 0.023 (4) 0.040 (5) −0.003 (3) −0.001 (3) −0.004 (3)
C21 0.028 (3) 0.023 (4) 0.023 (4) 0.005 (3) −0.005 (3) −0.001 (3)
C22 0.022 (3) 0.015 (3) 0.021 (4) 0.003 (3) −0.003 (3) −0.005 (3)
C23 0.034 (4) 0.041 (4) 0.026 (4) 0.000 (3) 0.005 (3) −0.009 (4)
C24 0.040 (4) 0.028 (4) 0.043 (5) −0.004 (3) 0.005 (4) −0.007 (4)
C25 0.044 (4) 0.030 (4) 0.028 (5) 0.008 (3) 0.002 (4) −0.012 (3)
C26 0.026 (3) 0.031 (4) 0.028 (4) −0.002 (3) 0.012 (3) −0.002 (3)
C27 0.023 (3) 0.023 (4) 0.032 (4) −0.002 (3) 0.000 (3) −0.006 (3)
C28 0.025 (3) 0.024 (4) 0.018 (4) −0.002 (3) −0.005 (3) −0.004 (3)
C29 0.026 (3) 0.019 (3) 0.023 (4) −0.002 (3) 0.003 (3) 0.001 (3)
C30 0.037 (4) 0.029 (4) 0.032 (5) 0.004 (3) 0.003 (4) 0.001 (3)
C31 0.029 (4) 0.045 (5) 0.039 (5) 0.009 (3) 0.007 (4) −0.002 (4)
C32 0.046 (4) 0.033 (4) 0.026 (5) −0.013 (3) 0.011 (4) −0.011 (3)
C33 0.046 (4) 0.047 (5) 0.018 (4) −0.020 (4) −0.004 (4) −0.005 (4)
C34 0.024 (3) 0.046 (4) 0.023 (4) −0.005 (3) −0.002 (3) 0.001 (4)
C35 0.105 (8) 0.028 (5) 0.065 (7) −0.005 (5) −0.042 (6) 0.002 (5)
C36 0.087 (7) 0.049 (6) 0.100 (9) 0.022 (5) −0.035 (7) −0.028 (6)
Cl1 0.0209 (8) 0.0269 (9) 0.0301 (11) −0.0032 (7) −0.0085 (8) −0.0020 (8)
N1 0.016 (3) 0.019 (3) 0.020 (3) 0.002 (2) −0.006 (2) 0.002 (2)
N2 0.024 (3) 0.024 (3) 0.018 (3) 0.001 (2) −0.001 (3) −0.005 (2)
N3 0.022 (3) 0.022 (3) 0.016 (3) −0.001 (2) −0.001 (2) 0.001 (2)
N4 0.023 (3) 0.019 (3) 0.024 (3) 0.000 (2) −0.003 (3) −0.009 (2)
N5 0.016 (3) 0.017 (3) 0.023 (3) 0.002 (2) −0.004 (2) −0.005 (2)
N6 0.027 (3) 0.016 (3) 0.020 (3) 0.000 (2) 0.000 (3) −0.002 (2)
N7 0.019 (3) 0.017 (3) 0.020 (3) −0.002 (2) −0.006 (3) 0.001 (3)
O2 0.066 (4) 0.073 (4) 0.046 (4) 0.007 (3) −0.011 (3) −0.009 (3)
P1 0.0193 (8) 0.0204 (9) 0.0169 (10) 0.0008 (7) −0.0017 (8) −0.0011 (8)
Ru1 0.0162 (2) 0.0176 (3) 0.0165 (3) 0.00072 (19) −0.0021 (2) −0.0017 (2)

Geometric parameters (Å, °)

B1—N2 1.530 (9) C20—C21 1.377 (8)
B1—N4 1.541 (8) C20—H20 0.9500
B1—N6 1.545 (8) C21—H21 0.9500
B1—H1' 1.0000 C22—C27 1.383 (8)
C1—N1 1.326 (8) C22—C23 1.397 (8)
C1—C2 1.380 (8) C22—P1 1.838 (6)
C1—H1 0.9500 C23—C24 1.384 (8)
C2—C3 1.365 (9) C23—H23 0.9500
C2—H2 0.9500 C24—C25 1.382 (9)
C3—N2 1.341 (7) C24—H24 0.9500
C3—H3 0.9500 C25—C26 1.361 (8)
C4—N3 1.332 (7) C25—H25 0.9500
C4—C5 1.378 (8) C26—C27 1.382 (8)
C4—H4 0.9500 C26—H26 0.9500
C5—C6 1.379 (8) C27—H27 0.9500
C5—H5 0.9500 C28—N7 1.144 (7)
C6—N4 1.339 (7) C28—C29 1.436 (9)
C6—H6 0.9500 C29—C34 1.375 (8)
C7—N5 1.323 (7) C29—C30 1.393 (8)
C7—C8 1.385 (8) C30—C31 1.366 (9)
C7—H7 0.9500 C30—H30 0.9500
C8—C9 1.356 (8) C31—C32 1.375 (8)
C8—H8 0.9500 C31—H31 0.9500
C9—N6 1.355 (7) C32—C33 1.377 (9)
C9—H9 0.9500 C32—H32 0.9500
C10—C15 1.386 (7) C33—C34 1.380 (9)
C10—C11 1.396 (8) C33—H33 0.9500
C10—P1 1.833 (6) C34—H34 0.9500
C11—C12 1.372 (8) C35—O2 1.403 (8)
C11—H11 0.9500 C35—C36 1.535 (11)
C12—C13 1.380 (8) C35—H35A 0.9900
C12—H12 0.9500 C35—H35B 0.9900
C13—C14 1.364 (8) C36—H36A 0.9800
C13—H13 0.9500 C36—H36B 0.9800
C14—C15 1.383 (8) C36—H36C 0.9800
C14—H14 0.9500 Cl1—Ru1 2.4259 (14)
C15—H15 0.9500 N1—N2 1.371 (6)
C16—C17 1.383 (8) N1—Ru1 2.063 (5)
C16—C21 1.400 (7) N3—N4 1.373 (6)
C16—P1 1.834 (6) N3—Ru1 2.069 (4)
C17—C18 1.381 (8) N5—N6 1.354 (6)
C17—H17 0.9500 N5—Ru1 2.102 (5)
C18—C19 1.362 (8) N7—Ru1 1.991 (5)
C18—H18 0.9500 O2—H2' 0.8400
C19—C20 1.383 (8) P1—Ru1 2.3205 (16)
C19—H19 0.9500
N2—B1—N4 108.7 (5) C24—C25—H25 120.7
N2—B1—N6 107.5 (5) C25—C26—C27 121.1 (6)
N4—B1—N6 107.0 (5) C25—C26—H26 119.5
N2—B1—H1' 111.1 C27—C26—H26 119.5
N4—B1—H1' 111.1 C26—C27—C22 121.5 (6)
N6—B1—H1' 111.1 C26—C27—H27 119.3
N1—C1—C2 111.4 (6) C22—C27—H27 119.3
N1—C1—H1 124.3 N7—C28—C29 178.6 (7)
C2—C1—H1 124.3 C34—C29—C30 119.9 (6)
C3—C2—C1 104.6 (6) C34—C29—C28 120.5 (5)
C3—C2—H2 127.7 C30—C29—C28 119.6 (6)
C1—C2—H2 127.7 C31—C30—C29 120.0 (7)
N2—C3—C2 109.1 (6) C31—C30—H30 120.0
N2—C3—H3 125.5 C29—C30—H30 120.0
C2—C3—H3 125.5 C30—C31—C32 119.9 (6)
N3—C4—C5 110.9 (5) C30—C31—H31 120.1
N3—C4—H4 124.5 C32—C31—H31 120.1
C5—C4—H4 124.5 C31—C32—C33 120.6 (7)
C6—C5—C4 104.9 (5) C31—C32—H32 119.7
C6—C5—H5 127.6 C33—C32—H32 119.7
C4—C5—H5 127.6 C32—C33—C34 119.8 (6)
N4—C6—C5 108.8 (5) C32—C33—H33 120.1
N4—C6—H6 125.6 C34—C33—H33 120.1
C5—C6—H6 125.6 C29—C34—C33 119.8 (6)
N5—C7—C8 110.7 (5) C29—C34—H34 120.1
N5—C7—H7 124.7 C33—C34—H34 120.1
C8—C7—H7 124.7 O2—C35—C36 108.7 (7)
C9—C8—C7 105.0 (6) O2—C35—H35A 110.0
C9—C8—H8 127.5 C36—C35—H35A 110.0
C7—C8—H8 127.5 O2—C35—H35B 110.0
N6—C9—C8 108.6 (5) C36—C35—H35B 110.0
N6—C9—H9 125.7 H35A—C35—H35B 108.3
C8—C9—H9 125.7 C35—C36—H36A 109.5
C15—C10—C11 117.4 (5) C35—C36—H36B 109.5
C15—C10—P1 122.4 (5) H36A—C36—H36B 109.5
C11—C10—P1 120.1 (4) C35—C36—H36C 109.5
C12—C11—C10 121.4 (5) H36A—C36—H36C 109.5
C12—C11—H11 119.3 H36B—C36—H36C 109.5
C10—C11—H11 119.3 C1—N1—N2 105.8 (5)
C11—C12—C13 120.4 (6) C1—N1—Ru1 136.1 (4)
C11—C12—H12 119.8 N2—N1—Ru1 118.0 (4)
C13—C12—H12 119.8 C3—N2—N1 109.1 (5)
C14—C13—C12 118.8 (6) C3—N2—B1 129.9 (5)
C14—C13—H13 120.6 N1—N2—B1 120.8 (5)
C12—C13—H13 120.6 C4—N3—N4 106.3 (5)
C13—C14—C15 121.4 (6) C4—N3—Ru1 134.6 (4)
C13—C14—H14 119.3 N4—N3—Ru1 118.6 (3)
C15—C14—H14 119.3 C6—N4—N3 109.2 (5)
C14—C15—C10 120.6 (6) C6—N4—B1 129.9 (5)
C14—C15—H15 119.7 N3—N4—B1 120.0 (4)
C10—C15—H15 119.7 C7—N5—N6 106.7 (4)
C17—C16—C21 117.1 (6) C7—N5—Ru1 133.9 (4)
C17—C16—P1 123.2 (5) N6—N5—Ru1 119.3 (4)
C21—C16—P1 119.5 (5) N5—N6—C9 109.0 (5)
C18—C17—C16 121.8 (6) N5—N6—B1 119.1 (4)
C18—C17—H17 119.1 C9—N6—B1 132.0 (5)
C16—C17—H17 119.1 C28—N7—Ru1 175.5 (5)
C19—C18—C17 120.7 (7) C35—O2—H2' 109.5
C19—C18—H18 119.7 C10—P1—C16 100.4 (3)
C17—C18—H18 119.7 C10—P1—C22 102.2 (3)
C18—C19—C20 118.8 (6) C16—P1—C22 99.5 (3)
C18—C19—H19 120.6 C10—P1—Ru1 113.87 (19)
C20—C19—H19 120.6 C16—P1—Ru1 119.88 (18)
C21—C20—C19 121.0 (6) C22—P1—Ru1 118.0 (2)
C21—C20—H20 119.5 N7—Ru1—N1 173.57 (19)
C19—C20—H20 119.5 N7—Ru1—N3 89.01 (19)
C20—C21—C16 120.7 (6) N1—Ru1—N3 90.33 (18)
C20—C21—H21 119.7 N7—Ru1—N5 89.35 (19)
C16—C21—H21 119.7 N1—Ru1—N5 84.21 (19)
C27—C22—C23 117.2 (6) N3—Ru1—N5 85.23 (17)
C27—C22—P1 120.7 (4) N7—Ru1—P1 94.34 (14)
C23—C22—P1 122.1 (5) N1—Ru1—P1 92.08 (13)
C24—C23—C22 120.7 (7) N3—Ru1—P1 92.67 (13)
C24—C23—H23 119.7 N5—Ru1—P1 175.72 (15)
C22—C23—H23 119.7 N7—Ru1—Cl1 88.69 (13)
C23—C24—C25 120.9 (6) N1—Ru1—Cl1 90.79 (13)
C23—C24—H24 119.6 N3—Ru1—Cl1 169.39 (13)
C25—C24—H24 119.6 N5—Ru1—Cl1 84.39 (13)
C26—C25—C24 118.6 (6) P1—Ru1—Cl1 97.83 (5)
C26—C25—H25 120.7

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2139).

References

  1. Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem 31, 2906–2908.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Burrows, A. D. (2001). CrystEngComm, 46, 1–5.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
  7. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Pavlik, S., Mereiter, K., Puchberger, M. &Kirchner, K. (2005). Organometallics, 24, 3561–3575.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.
  12. Trofimenko, S. (1993). Chem. Rev 93, 943–980.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010265/nc2139sup1.cif

e-65-0m438-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010265/nc2139Isup2.hkl

e-65-0m438-Isup2.hkl (279.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES