Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o797. doi: 10.1107/S1600536809009179

Tetra­methyl­ammonium dihydrogen phosphate hemihydrate

Kyoko Fujita a, Douglas R MacFarlane b, Keiichi Noguchi c, Hiroyuki Ohno a,*
PMCID: PMC2968790  PMID: 21582521

Abstract

In the crystal structure of the title compound, C4H12N+·H2PO4 ·0.5H2O, the anions form an infinite hydrogen-bonded chain along the [1Inline graphic0] direction. The anion chains are connected by water mol­ecules, which lie on crystallographic twofold rotation axes, through O—H⋯O hydrogen bonds. These hydrogen bonds are almost perpendicular to the other hydrogen bonds which create an assembled structure of anions. In addition, C—H⋯O hydrogen bonds between anions and cations are observed.

Related literature

For the structure of tetra­methyl­ammonium dihydrogen phosphate monohydrate, see: Ohama et al. (1987).graphic file with name e-65-0o797-scheme1.jpg

Experimental

Crystal data

  • C4H12N+·H2PO4 ·0.5H2O

  • M r = 180.14

  • Monoclinic, Inline graphic

  • a = 14.3213 (3) Å

  • b = 9.2607 (2) Å

  • c = 13.1990 (2) Å

  • β = 103.614 (1)°

  • V = 1701.34 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.72 mm−1

  • T = 193 K

  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.390, T max = 0.580

  • 14805 measured reflections

  • 1565 independent reflections

  • 1505 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.05

  • 1565 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009179/is2395sup1.cif

e-65-0o797-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009179/is2395Isup2.hkl

e-65-0o797-Isup2.hkl (75.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.96 (4) 1.57 (4) 2.5196 (18) 169 (4)
O4—H4O⋯O1ii 0.75 (3) 1.83 (3) 2.5644 (19) 169 (3)
O5—H5O⋯O1 0.83 (3) 2.06 (3) 2.8883 (15) 173 (3)
C1—H1B⋯O1iii 0.98 2.62 3.405 (2) 137
C2—H2B⋯O4iv 0.98 2.39 3.291 (3) 153
C2—H2C⋯O2 0.98 2.59 3.506 (3) 156
C2—H2C⋯O1 0.98 2.62 3.473 (3) 145
C3—H3A⋯O3v 0.98 2.57 3.495 (3) 157
C4—H4C⋯O3vi 0.98 2.62 3.465 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. KF thanks the Japan Society for Promotion of Science (Research Fellowship for Young Scientists) for support.

supplementary crystallographic information

Comment

The title compound, (I), forms two hydrate states, hemihydrate and monohydrate. Basic structure about monohydrate had been published (Ohama et al., 1987). We report herein the crystal structure of the hemihydrate compound.

The molecular structures of (I) are shown in Fig. 1. There are eight anions and cations, and four water molecules in a unit cell. The water molecules are located on twofold rotation axes. The anions create infinite chains by using two hydrogen bonds of O4—H···O1 and O3—H···O2 (Fig. 2). These chains run two different directions mutually along the c axis. One is [110] direction, the other is [110] direction. Water molecules connect the anion chains by hydrogen bonds of O5—H···O1, so as to create three dimensional networks. The cations are arranged along with the anion chains (Fig. 3). Molecular packing is additionally stabilized by C—H···O hydrogen bonds between anions and cations (Table 1).

Experimental

Tetramethylammonium hydrated solution was mixed with phosphoric acid. The solvent was evaporated and product was dried in vacuo. Final purification was achieved by recrystallization from a methanol solution. The compound was identified using 1H NMR, DSC and Electrospray mass spectrometry.

Refinement

Hydroxyl H atoms in dihydrogen phosphate and water molecule were located in a difference Fourier map and were subsequently refined freely. Methyl H atoms were positioned by using the HFIX 137 instruction in SHELXL97, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot and atomic numbering scheme of (I). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (vii) -x + 1, y, -z + 1/2.]

Fig. 2.

Fig. 2.

The molecular packing of (I), viewed along the b axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 1/2,-y + 1/2, -z + 1; (ii) -x + 1, -y, -z + 1.]

Fig. 3.

Fig. 3.

The molecular packing of (I), viewed along the c axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 1/2,-y + 1/2, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1/2, y + 1/2, -z + 1/2.]

Crystal data

C4H12N+·H2O4P·0.5H2O F(000) = 776
Mr = 180.14 Dx = 1.407 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2yc Cell parameters from 13463 reflections
a = 14.3213 (3) Å θ = 3.4–68.2°
b = 9.2607 (2) Å µ = 2.72 mm1
c = 13.1990 (2) Å T = 193 K
β = 103.614 (1)° Block, colorless
V = 1701.34 (6) Å3 0.40 × 0.35 × 0.20 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer 1565 independent reflections
Radiation source: rotating anode 1505 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 5.7°
ω scans h = −17→17
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −11→11
Tmin = 0.390, Tmax = 0.580 l = −15→15
14805 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0404P)2 + 2.3234P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1565 reflections Δρmax = 0.23 e Å3
113 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0039 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.37195 (3) 0.13092 (4) 0.48223 (3) 0.02350 (19)
O1 0.43439 (8) 0.11276 (14) 0.40616 (9) 0.0306 (3)
O2 0.26771 (8) 0.08626 (14) 0.43819 (10) 0.0355 (3)
O3 0.37576 (9) 0.28806 (13) 0.52247 (11) 0.0355 (3)
O4 0.41159 (10) 0.03446 (16) 0.58089 (10) 0.0375 (4)
N1 0.15455 (10) 0.15807 (15) 0.14754 (10) 0.0264 (3)
C1 0.11725 (17) 0.2789 (2) 0.20042 (16) 0.0456 (5)
H1A 0.0469 0.2784 0.1808 0.055*
H1B 0.1410 0.3707 0.1793 0.055*
H1C 0.1393 0.2675 0.2761 0.055*
C2 0.26055 (16) 0.1614 (4) 0.17612 (19) 0.0726 (9)
H2A 0.2831 0.2550 0.1566 0.087*
H2B 0.2856 0.0841 0.1392 0.087*
H2C 0.2833 0.1472 0.2515 0.087*
C3 0.12037 (14) 0.1727 (2) 0.03190 (14) 0.0384 (5)
H3A 0.0502 0.1653 0.0122 0.046*
H3B 0.1484 0.0956 −0.0023 0.046*
H3C 0.1401 0.2667 0.0100 0.046*
C4 0.1185 (3) 0.0209 (3) 0.1815 (2) 0.0816 (10)
H4A 0.0481 0.0194 0.1602 0.098*
H4B 0.1390 0.0128 0.2576 0.098*
H4C 0.1444 −0.0605 0.1493 0.098*
O5 0.5000 0.2765 (2) 0.2500 0.0533 (6)
H3O 0.318 (3) 0.325 (5) 0.537 (3) 0.130 (14)*
H4O 0.4569 (19) −0.003 (3) 0.5780 (19) 0.048 (7)*
H5O 0.4803 (19) 0.223 (3) 0.291 (2) 0.059 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0201 (3) 0.0248 (3) 0.0272 (3) 0.00388 (15) 0.00872 (17) −0.00004 (15)
O1 0.0281 (6) 0.0381 (7) 0.0282 (6) 0.0099 (5) 0.0117 (5) 0.0056 (5)
O2 0.0240 (6) 0.0379 (7) 0.0445 (7) −0.0021 (5) 0.0074 (5) −0.0135 (6)
O3 0.0291 (6) 0.0264 (7) 0.0538 (8) −0.0022 (5) 0.0155 (6) −0.0083 (6)
O4 0.0340 (7) 0.0466 (8) 0.0380 (7) 0.0179 (6) 0.0206 (6) 0.0146 (6)
N1 0.0293 (7) 0.0262 (7) 0.0246 (7) 0.0037 (6) 0.0081 (6) 0.0018 (5)
C1 0.0584 (13) 0.0441 (12) 0.0370 (10) 0.0183 (10) 0.0169 (9) −0.0020 (9)
C2 0.0317 (11) 0.145 (3) 0.0396 (12) 0.0238 (14) 0.0061 (9) −0.0052 (15)
C3 0.0414 (10) 0.0471 (11) 0.0260 (9) 0.0102 (9) 0.0064 (8) 0.0030 (8)
C4 0.162 (3) 0.0378 (13) 0.0494 (14) −0.0344 (17) 0.0325 (17) −0.0002 (11)
O5 0.0807 (17) 0.0291 (11) 0.0653 (15) 0.000 0.0476 (13) 0.000

Geometric parameters (Å, °)

P1—O1 1.5029 (12) C1—H1C 0.9800
P1—O2 1.5261 (12) C2—H2A 0.9800
P1—O3 1.5456 (12) C2—H2B 0.9800
P1—O4 1.5710 (13) C2—H2C 0.9800
O3—H3O 0.96 (5) C3—H3A 0.9800
O4—H4O 0.75 (3) C3—H3B 0.9800
N1—C2 1.476 (3) C3—H3C 0.9800
N1—C4 1.480 (3) C4—H4A 0.9800
N1—C1 1.483 (2) C4—H4B 0.9800
N1—C3 1.495 (2) C4—H4C 0.9800
C1—H1A 0.9800 O5—H5O 0.83 (3)
C1—H1B 0.9800
O1—P1—O2 113.43 (7) H1B—C1—H1C 109.5
O1—P1—O3 110.89 (7) N1—C2—H2A 109.5
O2—P1—O3 109.77 (7) N1—C2—H2B 109.5
O1—P1—O4 109.53 (7) H2A—C2—H2B 109.5
O2—P1—O4 106.97 (8) N1—C2—H2C 109.5
O3—P1—O4 105.89 (8) H2A—C2—H2C 109.5
P1—O3—H3O 116 (3) H2B—C2—H2C 109.5
P1—O4—H4O 111.8 (19) N1—C3—H3A 109.5
C2—N1—C4 110.6 (2) N1—C3—H3B 109.5
C2—N1—C1 109.08 (18) H3A—C3—H3B 109.5
C4—N1—C1 108.36 (18) N1—C3—H3C 109.5
C2—N1—C3 109.20 (15) H3A—C3—H3C 109.5
C4—N1—C3 109.46 (17) H3B—C3—H3C 109.5
C1—N1—C3 110.14 (14) N1—C4—H4A 109.5
N1—C1—H1A 109.5 N1—C4—H4B 109.5
N1—C1—H1B 109.5 H4A—C4—H4B 109.5
H1A—C1—H1B 109.5 N1—C4—H4C 109.5
N1—C1—H1C 109.5 H4A—C4—H4C 109.5
H1A—C1—H1C 109.5 H4B—C4—H4C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O2i 0.96 (4) 1.57 (4) 2.5196 (18) 169 (4)
O4—H4O···O1ii 0.75 (3) 1.83 (3) 2.5644 (19) 169 (3)
O5—H5O···O1 0.83 (3) 2.06 (3) 2.8883 (15) 173 (3)
C1—H1B···O1iii 0.98 2.62 3.405 (2) 137
C2—H2B···O4iv 0.98 2.39 3.291 (3) 153
C2—H2C···O2 0.98 2.59 3.506 (3) 156
C2—H2C···O1 0.98 2.62 3.473 (3) 145
C3—H3A···O3v 0.98 2.57 3.495 (3) 157
C4—H4C···O3vi 0.98 2.62 3.465 (3) 144

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y, z−1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2395).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Ohama, N., Machida, M., Nakamura, T. & Kunifuji, Y. (1987). Acta Cryst. C43, 962–964.
  5. Rigaku/MSC (1998). PROCESS-AUTO Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009179/is2395sup1.cif

e-65-0o797-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009179/is2395Isup2.hkl

e-65-0o797-Isup2.hkl (75.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES