Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):m380–m381. doi: 10.1107/S1600536809007764

Diaqua­bis(2,2′-biimidazole)cobalt(II) 4,4′-dicarboxy­biphenyl-3,3′-di­car­boxylate

Jie Kang a,b,*, Chang-Cang Huang b, Lai-Sheng Zhai b, Xiao-Huan Qin b, Zhong-Qian Liu b
PMCID: PMC2968794  PMID: 21582332

Abstract

In the title compound, [Co(C6H6N4)2(H2O)2](C16H8O8), the CoII cation and the organic anion occupy different crystallographic inversion centres and, as a consequence, the asymmetric unit comprises two half-mol­ecules. The benzene groups are coplanar. The four coordinating N atoms of the two bidentate biimidazole ligands define the equatorial plane of a slightly distorted octa­hedral CoO2N4 geometry, and the water O atoms lie in the axial coordination sites. Translational (a,Inline graphic) and inversion-related symmetry operations link the Co complex mol­ecules and the negatively charged carboxyl­ate anions via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to (Inline graphic01). The coordinated water mol­ecules connect the sheets through O—H⋯O hydrogen bonds, forming a three-dimensional framework. In addition, two intra­molecular O—H⋯O hydrogen bonds are observed between the carboxyl and carboxyl­ate groups.

Related literature

For a review on organic–inorganic hybrid materials, see: Hagrman et al. (1999). For a tetra­nuclear cobalt complex with a 1,2,4-benzene­tricarboxyl­ate linker, see: Jia et al. (2007). For a highly porous metal-organic framework with a benzene­dicarboxyl­ate linker, see: Li et al. (1999). For coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1H-imidazole-1-yl)acetic acid linker, see: Wang et al. (2007). For the structure of 1,1′-biphenyl-2,3,3′,4′-tetra­carboxylic acid monohydrate and related structures cited therein, see: Jiang et al. (2008).graphic file with name e-65-0m380-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H6N4)2(H2O)2](C16H8O8)

  • M r = 691.48

  • Triclinic, Inline graphic

  • a = 8.2272 (16) Å

  • b = 9.772 (2) Å

  • c = 10.484 (2) Å

  • α = 63.81 (3)°

  • β = 67.93 (3)°

  • γ = 84.03 (3)°

  • V = 699.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.42 × 0.26 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.760, T max = 0.874

  • 4982 measured reflections

  • 2603 independent reflections

  • 2527 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.01

  • 2603 reflections

  • 227 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007764/si2153sup1.cif

e-65-0m380-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007764/si2153Isup2.hkl

e-65-0m380-Isup2.hkl (127.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—O5 2.0882 (19)
Co1—N1 2.1412 (16)
Co1—N3 2.1579 (16)
O5—Co1—N1 88.32 (7)
N1—Co1—N3i 100.77 (6)
O5—Co1—N3 87.82 (7)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1ii 0.92 (2) 1.87 (2) 2.791 (3) 178.8 (18)
N4—H4A⋯O2ii 0.920 (18) 1.897 (19) 2.808 (3) 170.3 (19)
O5—H1W⋯O1iii 0.82 (2) 1.93 (2) 2.739 (3) 169 (2)
O5—H2W⋯O4i 0.81 (2) 1.88 (2) 2.673 (3) 163 (2)
O3—H3⋯O2 0.82 1.62 2.432 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Foundation of the Education Committee of Fujian Province (grant No. JA08103), and the Foundation of Daiichi Pharmaceutical (Beijing) Co, Ltd (grant No. 06B004).

supplementary crystallographic information

Comment

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs (Wang et al. 2007), but also for their potential applications, e. g. as organic-inorganic hybrid materials (Hagrman et al., 1999), highly porous metal-organic framework (Li et al., 1999), magnetochemistry (Jia et al., 2007). In contrast, the two ionic components of the title structure interact with N—H···O and O—H···O hydrogen bonds to form a three-dimensional framework.

As shown in Fig. 1, the Co atom (site symmetry 1) is bonded to two aqua and two bidentate biimidizole ligands, to result in a slightly distorterd octahedral CoO2N4 geometry for the central metal. The CoII cation and the organic anion occupy different crystallographic inversion centres, and as a consequence the asymmetric unit of the cell comprises two half molecules (Z' = 1/2), and the benzene groups are co-planar. The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two aqua oxygen atoms lie in the axial coordination sites. Selected bond lengths and angles around Co are listed in Table 1. The 1,1'-biphenyl-3,3'-dicarboxylate-4,4'-dicarboxylic acid acts as a negative electron balance. With three kinds of hydrogen bonds (Table 2) of N2—H2A···O1, N4—H4A···O2, and O5—H1W···O1, two-dimensional planes are formed. Furthermore, a three-dimensional framework (Fig. 2) is generated with the intermolecular hydrogen bonding contact O5—H2W···O4 along the [-1 0 1] direction. The organic anion has two intramolecular O3—H3···O2 hydrogen bonds between the carboxylic acid units and the carboxylate acceptors (Table 2). In contrast to the co-planar biphenyl group of the title compound, a dihedral angle of 42.30 (11)° between the two benzene rings was observed in the structure of 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid monohydrate (Jiang et al. 2008).

Experimental

All chemicals and Teflon-lined stainless steel autoclave were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. A mixture of 3,3',4,4'-biphenyl tetracarboxylic acid (0.1 mmoL), cobalt(II) acetate (0.1 mmoL), and diimdazole (0.1 mmoL) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Yellow crystals suitable for the X-ray experiment were obtained.

Refinement

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of d(H–H) = 1.38 (2) Å, d(O–H) = 0.88 (2) Å, and with a fixed Uiso of 0.056 Å2. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 10% probability level. Symmetry-related atoms are unlabelled. Symmetry code for the Co-complex: (1 - x, 1 - y, 1 - z); symmetry code for the organic anion: (1 - x, 2 - y, 2 - z).

Fig. 2.

Fig. 2.

A packing view of the title compound. Hydrogen bonds are marked by dashed lines.

Crystal data

[Co(C6H6N4)2(H2O)2](C16H8O8) Z = 1
Mr = 691.48 F(000) = 355
Triclinic, P1 Dx = 1.643 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2272 (16) Å Cell parameters from 2603 reflections
b = 9.772 (2) Å θ = 3.1–25.8°
c = 10.484 (2) Å µ = 0.69 mm1
α = 63.81 (3)° T = 293 K
β = 67.93 (3)° Block, colorless
γ = 84.03 (3)° 0.42 × 0.26 × 0.20 mm
V = 699.0 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 2603 independent reflections
Radiation source: fine-focus sealed tube 2527 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 25.8°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→9
Tmin = 0.760, Tmax = 0.874 k = −11→11
4982 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2 + 0.376P] where P = (Fo2 + 2Fc2)/3
2603 reflections (Δ/σ)max = 0.001
227 parameters Δρmax = 0.31 e Å3
5 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.5000 0.5000 0.5000 0.03059 (13)
C1 0.7400 (3) 0.5910 (2) 0.6513 (3) 0.0388 (5)
H1 0.7036 0.6865 0.6446 0.047*
C2 0.8671 (3) 0.5187 (2) 0.7049 (3) 0.0403 (5)
H2 0.9323 0.5542 0.7415 0.048*
C3 0.7617 (2) 0.3779 (2) 0.6368 (2) 0.0303 (4)
C4 0.7231 (2) 0.2591 (2) 0.6037 (2) 0.0305 (4)
C5 0.5986 (3) 0.1500 (2) 0.5229 (3) 0.0396 (5)
H5 0.5266 0.1311 0.4812 0.047*
C6 0.7143 (3) 0.0532 (2) 0.5751 (3) 0.0428 (5)
H6 0.7355 −0.0425 0.5762 0.051*
C7 0.2215 (3) 0.6649 (2) 0.8670 (2) 0.0355 (4)
C8 0.2957 (2) 0.7806 (2) 0.8950 (2) 0.0300 (4)
C9 0.4327 (3) 0.7276 (2) 0.9485 (2) 0.0372 (5)
H9 0.4710 0.6319 0.9577 0.045*
C10 0.5135 (3) 0.8106 (2) 0.9882 (3) 0.0383 (5)
H10 0.6051 0.7708 1.0222 0.046*
C11 0.4595 (2) 0.9535 (2) 0.9779 (2) 0.0289 (4)
C12 0.3260 (2) 1.0084 (2) 0.9211 (2) 0.0301 (4)
H12 0.2894 1.1046 0.9116 0.036*
C13 0.2436 (2) 0.9278 (2) 0.8777 (2) 0.0279 (4)
C14 0.1084 (2) 1.0170 (2) 0.8107 (2) 0.0330 (4)
N1 0.6735 (2) 0.50249 (18) 0.60857 (19) 0.0340 (4)
N2 0.8799 (2) 0.3839 (2) 0.6943 (2) 0.0365 (4)
H2A 0.951 (3) 0.307 (2) 0.726 (2) 0.044*
N3 0.6043 (2) 0.27901 (17) 0.54115 (19) 0.0335 (4)
N4 0.7934 (2) 0.12422 (19) 0.6258 (2) 0.0371 (4)
H4A 0.869 (2) 0.078 (2) 0.676 (2) 0.045*
O1 0.0983 (2) 1.15279 (16) 0.7860 (2) 0.0492 (4)
O2 0.0097 (2) 0.95144 (19) 0.7838 (2) 0.0552 (5)
O3 0.0823 (2) 0.68970 (19) 0.8329 (2) 0.0546 (4)
H3 0.0513 0.7749 0.8241 0.082*
O4 0.2931 (2) 0.54625 (18) 0.8800 (2) 0.0500 (4)
O5 0.7116 (2) 0.58986 (18) 0.29083 (18) 0.0469 (4)
H1W 0.763 (3) 0.6721 (18) 0.259 (3) 0.056*
H2W 0.730 (3) 0.557 (2) 0.228 (2) 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0353 (2) 0.0244 (2) 0.0457 (2) 0.00797 (14) −0.02832 (17) −0.01710 (17)
C1 0.0454 (11) 0.0331 (11) 0.0579 (13) 0.0098 (9) −0.0324 (10) −0.0271 (10)
C2 0.0445 (11) 0.0408 (12) 0.0564 (13) 0.0074 (9) −0.0326 (10) −0.0281 (10)
C3 0.0306 (9) 0.0293 (10) 0.0390 (10) 0.0070 (7) −0.0211 (8) −0.0158 (8)
C4 0.0343 (10) 0.0251 (9) 0.0380 (10) 0.0072 (7) −0.0206 (8) −0.0140 (8)
C5 0.0514 (12) 0.0301 (10) 0.0528 (12) 0.0054 (9) −0.0327 (10) −0.0206 (9)
C6 0.0559 (13) 0.0272 (10) 0.0599 (13) 0.0106 (9) −0.0321 (11) −0.0240 (10)
C7 0.0417 (11) 0.0327 (11) 0.0414 (11) 0.0038 (8) −0.0214 (9) −0.0194 (9)
C8 0.0341 (9) 0.0292 (10) 0.0327 (9) 0.0033 (7) −0.0170 (8) −0.0150 (8)
C9 0.0479 (11) 0.0277 (10) 0.0519 (12) 0.0141 (8) −0.0317 (10) −0.0222 (9)
C10 0.0468 (11) 0.0320 (10) 0.0561 (12) 0.0159 (9) −0.0388 (10) −0.0227 (9)
C11 0.0341 (9) 0.0250 (9) 0.0348 (9) 0.0058 (7) −0.0202 (8) −0.0139 (8)
C12 0.0337 (9) 0.0254 (9) 0.0389 (10) 0.0071 (7) −0.0210 (8) −0.0153 (8)
C13 0.0286 (9) 0.0276 (9) 0.0326 (9) 0.0043 (7) −0.0176 (7) −0.0126 (8)
C14 0.0321 (10) 0.0332 (11) 0.0443 (11) 0.0072 (8) −0.0229 (8) −0.0197 (9)
N1 0.0382 (9) 0.0291 (9) 0.0491 (10) 0.0093 (7) −0.0287 (8) −0.0205 (8)
N2 0.0371 (9) 0.0364 (9) 0.0505 (10) 0.0116 (7) −0.0303 (8) −0.0215 (8)
N3 0.0399 (9) 0.0260 (8) 0.0451 (9) 0.0066 (7) −0.0273 (8) −0.0159 (7)
N4 0.0416 (9) 0.0299 (9) 0.0503 (10) 0.0115 (7) −0.0286 (8) −0.0187 (8)
O1 0.0495 (9) 0.0308 (8) 0.0865 (12) 0.0132 (7) −0.0501 (9) −0.0234 (8)
O2 0.0614 (10) 0.0485 (9) 0.0989 (13) 0.0239 (8) −0.0639 (10) −0.0445 (9)
O3 0.0583 (10) 0.0429 (9) 0.0953 (13) 0.0131 (7) −0.0519 (10) −0.0402 (10)
O4 0.0654 (10) 0.0392 (9) 0.0746 (11) 0.0165 (7) −0.0444 (9) −0.0368 (8)
O5 0.0579 (10) 0.0382 (9) 0.0516 (9) −0.0085 (7) −0.0184 (8) −0.0244 (7)

Geometric parameters (Å, °)

Co1—O5i 2.0882 (19) C7—O4 1.220 (3)
Co1—O5 2.0882 (19) C7—O3 1.293 (2)
Co1—N1 2.1412 (16) C7—C8 1.519 (3)
Co1—N1i 2.1412 (16) C8—C9 1.397 (3)
Co1—N3i 2.1579 (16) C8—C13 1.410 (3)
Co1—N3 2.1579 (16) C9—C10 1.375 (3)
C1—C2 1.359 (3) C9—H9 0.9300
C1—N1 1.369 (2) C10—C11 1.390 (3)
C1—H1 0.9300 C10—H10 0.9300
C2—N2 1.360 (3) C11—C12 1.391 (3)
C2—H2 0.9300 C11—C11ii 1.490 (3)
C3—N1 1.325 (2) C12—C13 1.395 (3)
C3—N2 1.340 (2) C12—H12 0.9300
C3—C4 1.444 (3) C13—C14 1.528 (3)
C4—N3 1.324 (2) C14—O1 1.235 (2)
C4—N4 1.341 (2) C14—O2 1.261 (2)
C5—C6 1.360 (3) N2—H2A 0.921 (10)
C5—N3 1.364 (2) N4—H4A 0.918 (10)
C5—H5 0.9300 O3—H3 0.8200
C6—N4 1.366 (3) O5—H1W 0.82 (2)
C6—H6 0.9300 O5—H2W 0.81 (2)
O5i—Co1—O5 180 C13—C8—C7 129.44 (17)
O5i—Co1—N1 91.68 (7) C10—C9—C8 122.91 (18)
O5—Co1—N1 88.32 (7) C10—C9—H9 118.5
O5i—Co1—N1i 88.32 (7) C8—C9—H9 118.5
N1—Co1—N1i 180 C9—C10—C11 120.56 (18)
O5i—Co1—N3i 87.82 (7) C9—C10—H10 119.7
O5—Co1—N3i 92.18 (7) C11—C10—H10 119.7
N1—Co1—N3i 100.77 (6) C10—C11—C12 116.73 (17)
N1i—Co1—N3i 79.23 (6) C10—C11—C11ii 122.6 (2)
O5i—Co1—N3 92.18 (7) C12—C11—C11ii 120.7 (2)
O5—Co1—N3 87.82 (7) C11—C12—C13 123.93 (17)
N1—Co1—N3 79.23 (6) C11—C12—H12 118.0
N3i—Co1—N3 180 C13—C12—H12 118.0
C2—C1—N1 109.90 (17) C12—C13—C8 118.32 (16)
C2—C1—H1 125.0 C12—C13—C14 113.67 (16)
N1—C1—H1 125.0 C8—C13—C14 127.98 (16)
N2—C2—C1 106.11 (17) O1—C14—O2 121.81 (18)
N2—C2—H2 126.9 O1—C14—C13 118.10 (17)
C1—C2—H2 126.9 O2—C14—C13 120.09 (17)
N1—C3—N2 111.51 (17) C3—N1—C1 105.05 (16)
N1—C3—C4 119.29 (16) C3—N1—Co1 111.21 (12)
N2—C3—C4 129.20 (17) C1—N1—Co1 143.48 (13)
N3—C4—N4 111.61 (17) C3—N2—C2 107.42 (17)
N3—C4—C3 119.34 (16) C3—N2—H2A 125.3 (15)
N4—C4—C3 129.05 (17) C2—N2—H2A 127.2 (15)
C6—C5—N3 109.48 (18) C4—N3—C5 105.57 (16)
C6—C5—H5 125.3 C4—N3—Co1 110.75 (12)
N3—C5—H5 125.3 C5—N3—Co1 143.64 (14)
C5—C6—N4 106.57 (17) C4—N4—C6 106.77 (17)
C5—C6—H6 126.7 C4—N4—H4A 129.4 (15)
N4—C6—H6 126.7 C6—N4—H4A 123.4 (15)
O4—C7—O3 120.13 (18) C7—O3—H3 109.5
O4—C7—C8 119.10 (18) Co1—O5—H1W 121.0 (16)
O3—C7—C8 120.75 (17) Co1—O5—H2W 121.0 (16)
C9—C8—C13 117.47 (17) H1W—O5—H2W 116.1 (17)
C9—C8—C7 113.08 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1iii 0.92 (2) 1.87 (2) 2.791 (3) 179 (2)
N4—H4A···O2iii 0.92 (2) 1.90 (2) 2.808 (3) 170 (2)
O5—H1W···O1iv 0.82 (2) 1.93 (2) 2.739 (3) 169 (2)
O5—H2W···O4i 0.81 (2) 1.88 (2) 2.673 (3) 163 (2)
O3—H3···O2 0.82 1.62 2.432 (3) 172

Symmetry codes: (iii) x+1, y−1, z; (iv) −x+1, −y+2, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2153).

References

  1. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [DOI] [PubMed]
  4. Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem.10, 265–268.
  5. Jiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846. [DOI] [PMC free article] [PubMed]
  6. Li, H., Eddaoudi, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct.831, 61–68.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007764/si2153sup1.cif

e-65-0m380-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007764/si2153Isup2.hkl

e-65-0m380-Isup2.hkl (127.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES