Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m436–m437. doi: 10.1107/S1600536809010150

Poly[[μ-aqua-aqua­[μ4-ethyl (dichloro­methyl­ene)diphospho­nato]sesqui­calcium(II)] acetone hemisolvate 4.5-hydrate]

Jonna Jokiniemi a,*, Sirpa Peräniemi b, Jouko Vepsäläinen b, Markku Ahlgrén a
PMCID: PMC2968796  PMID: 21582374

Abstract

The title compound, {[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5CH3COCH3·4.5H2O}n, has a two-dimensional polymeric structure. The asymmetric unit contains two crystallographically independent Ca2+ cations connected by a chelating and bridging ethyl (dichloro­methyl­ene)diphos­pho­n­ate(3) ligand and an aqua ligand. One of the Ca atoms, lying on a centre of symmetry, has a slightly distorted octa­hedral geometry, while the other Ca atom is seven-coordinated in a distorted monocapped trigonal-prismatic geometry. The polymeric layers are further connected by extensive O—H⋯O hydrogen bonding into a three-dimensional supra­molecular network. The acetone solvent mol­ecule and one uncoordin­ated water mol­ecule are located on twofold rotation axes.

Related literature

For applications of metal complexes of bis­phospho­nates, see: Clearfield et al. (2001); Clearfield (1998); Fu et al. (2007); Serre et al. (2006). For calcium bis­phospho­nate complexes, see: Lin et al. (2007); Mathew et al. (1998). For metal complexes of bis­phospho­nate ester derivatives, see: Jokiniemi et al. (2007, 2008).graphic file with name e-65-0m436-scheme1.jpg

Experimental

Crystal data

  • [Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O

  • M r = 476.17

  • Monoclinic, Inline graphic

  • a = 31.2205 (3) Å

  • b = 10.1546 (1) Å

  • c = 11.6510 (1) Å

  • β = 103.107 (1)°

  • V = 3597.51 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 150 K

  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) T min = 0.823, T max = 0.905

  • 31118 measured reflections

  • 4209 independent reflections

  • 3617 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.073

  • S = 1.10

  • 4209 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010150/xu2487sup1.cif

e-65-0m436-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010150/xu2487Isup2.hkl

e-65-0m436-Isup2.hkl (202.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ca1—O1 2.3778 (14)
Ca1—O11 2.2278 (14)
Ca1—O21 2.3279 (15)
Ca2—O1 2.5726 (15)
Ca2—O2 2.4024 (15)
Ca2—O11i 2.4049 (15)
Ca2—O12 2.3466 (14)
Ca2—O13ii 2.3320 (15)
Ca2—O13i 2.5858 (15)
Ca2—O22 2.3158 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3 0.99 1.81 2.794 (2) 171
O1—H1A⋯O12ii 0.99 1.83 2.637 (2) 137
O2—H2A⋯O3 0.84 1.88 2.717 (2) 172
O2—H2B⋯O21iii 0.85 1.90 2.746 (2) 177
O3—H3A⋯O6iv 0.86 1.93 2.782 (2) 175
O3—H3B⋯O4iii 0.86 1.89 2.734 (2) 169
O4—H4A⋯O22 0.85 2.00 2.841 (2) 166
O4—H4B⋯O2iv 0.85 1.93 2.754 (2) 163
O5—H5A⋯O4 0.85 2.02 2.838 (2) 163
O5—H5B⋯O6 0.85 2.05 2.901 (3) 171
O6—H6A⋯O8 0.85 2.02 2.831 (2) 161
O6—H6B⋯O7v 0.84 2.26 2.832 (2) 125
O7—H7⋯O5 0.84 1.98 2.799 (2) 166

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

Metal bisphosphonates have been attracting closer attention in light of their important applications in industrial processes such as ion-exchange, catalysis and sorption (Clearfield et al., 2001, Clearfield, 1998, Fu et al., 2007). Metal bisphosphonates usually adopt layered or pillared layered structures (Fu et al., 2007, Mathew et al., 1998). Other structural types, such as 1-D and 3-D open networks, have also been prepared in order to study the properties of bisphosphonate solid materials (Lin et al., 2007, Fu et al., 2007). Most of the effective materials consist of open frameworks and microporous structures (Fu et al., 2007, Serre et al., 2006). In recent investigations, we studied the complexing properties of amide ester derivatives of (dichloromethylene)bisphosphonate, Cl2MBP (Jokiniemi et al., 2007, 2008). The introduction of various ester substituents into phosphonate groups can results in novel structures of metal bisphosphonates and lead to interesting functionalities. Of the numerous metal phosphonate compounds now known, only a small number have been prepared with alkali earth metals. We now present the crystal structure of the Ca(II) complex of the monoethyl ester derivative of Cl2MBP obtained by gel crystallization.

The title compound consists of two-dimensional layers parallel to the (100) plane. The Ca1 atom lies on the centre of symmetry with two symmetrically chelating (Cl2CP2O6Et)3- ligands and two aqua ligands in axial positions; the geometry is slightly distorted octahedron with Ca1–O bond lengths of 2.228 (1)–2.378 (1) Å (Table 1, Fig. 1). The three trans bond angles are 180.0°, while the cis bond angles range from 84.12 (5) to 95.88 (5)°. The aqua ligand O1 bridges Ca1 and the adjacent Ca2 atom with Ca···Ca distance of 4.4283 (4) Å. The Ca2 atom is seven-coordinated in distorted monocapped trigonal prismatic geometry and is coordinated by five phosphonate O atoms from three different (Cl2CP2O6Et)3- ligands. The coordination sphere is completed by two aqua ligands. The Ca2–O bond lengths are 2.316 (2)–2.586 (2) Å. The (Cl2CP2O6Et)3- ligand is coordinated to four Ca2+ cations through five O atoms forming two six-membered chelate rings with Ca1 and Ca2 atoms, and the P1 atom forms a four-membered chelate ring with the adjacent Ca2D atom (x, -y, z - 1/2). Thus, the two oxygen atoms (O11, O13) act as monoatomic bridges between two Ca atoms.

The layers are further connected by extensive hydrogen bonding (O···O 2.637 (2)–2.901 (3) Å, 125–177°) into a 3-D network with the interlayer distance of 15.2036 (2) Å (Fig. 2, Table 2). The O8 and C2 atoms of the acetone molecule, as well as the water molecule O7, are located on the individual two-fold rotation axis. The ethyl groups and chlorine atoms point out from the layers.

Experimental

Na3Cl2CP2O6Et (10.0 mg, 0.030 mmol) and CaCl2.2H2O (4.3 mg, 0.030 mmol) were dissolved separately in water (2.25 ml), the solutions were mixed, and tetramethoxysilane (TMOS 0.5 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1.0 ml), was added above the gel to induce crystallization. After about three months, colourless crystals suitable for X-ray analysis were formed uniformly throughout the gel as thin needles. The elemental analyses were performed several times and the results were consistent indicating that the acetone molecule and 3.5 water molecules were evaporated when the crystals were dried in air.

Refinement

H atoms of the ethyl group and acetone molecule were placed at calculated positions in the riding-model approximation with C–H distances of 0.99 Å (methylene) and 0.98 Å (methyl), and with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). H atoms of the aqua ligands and lattice water molecules were located in a difference map and treated as riding, with O–H bond lengths constrained to 0.84–0.99 Å and with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

A part of the polymeric structure of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines. Atoms labelled with suffixes A–F are at the symmetry positions (1/2 - x, 1/2 - y, -z), (1/2 - x, 1/2 + y, 1/2 - z), (x, -y, 1/2 + z), (x, -y, z - 1/2), (1/2 - x, y - 1/2, 1/2 - z) and (- x, y, 3/2 - z), respectively.

Fig. 2.

Fig. 2.

Packing of the title compound viewed along the c-axis showing the hydrogen bond interactions. CaO6 and CaO7 polyhedra are presented in light grey and PO3C tetrahedra in dark grey. Ethyl groups, chlorine atoms and H atoms of the acetone molecules are omitted for clarity.

Crystal data

[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O F(000) = 1968
Mr = 476.17 Dx = 1.758 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 31118 reflections
a = 31.2205 (3) Å θ = 2.7–28.0°
b = 10.1546 (1) Å µ = 1.02 mm1
c = 11.6510 (1) Å T = 150 K
β = 103.107 (1)° Needle, colourless
V = 3597.51 (6) Å3 0.25 × 0.15 × 0.10 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 4209 independent reflections
Radiation source: fine-focus sealed tube 3617 reflections with I > 2σ(I)
graphite Rint = 0.055
φ scans, and ω scans with κ offsets θmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) h = −40→40
Tmin = 0.823, Tmax = 0.905 k = −13→13
31118 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.02P)2 + 12P] where P = (Fo2 + 2Fc2)/3
4209 reflections (Δ/σ)max = 0.001
213 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Experimental. These results are supported by the IR spectrum and TG analysis. Anal. Found: C, 9.30; H, 3.06%. Calc. for C3H11Cl2Ca1.5O9P2: C, 9.38; H, 2.89%. Main IR absorptions (KBr pellet, cm-1): 3385 (b,s), 2995 (w), 1648 (b,m), 1389 (m), 1213 (s), 1148 (s), 1105 (versus), 1082 (versus), 1048 (m), 1008 (m), 959 (m), 871 (m), 852 (w), 760 (m). 31P CP/MAS NMR: δP 7.4 and 5.1 p.p.m.. TGA (25–700 °C under a synthetic air): 25–180 °C 13.1% (calculated 14.1% for the loss of three water molecules). The observed total weight loss is 40.0% (calculated 41.1% if the final product is assumed to be a mixture of Ca(PO3)2 and CaO in a molar ratio of 2:1).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ca1 0.2500 0.2500 0.0000 0.00999 (12)
Ca2 0.248223 (14) 0.12782 (4) 0.36375 (3) 0.00930 (9)
Cl1 0.129792 (17) −0.08747 (5) 0.13650 (4) 0.01375 (11)
Cl2 0.137474 (18) 0.01918 (5) −0.08762 (4) 0.01548 (11)
P1 0.218448 (17) −0.04904 (5) 0.08794 (4) 0.00900 (11)
P2 0.160183 (17) 0.18410 (5) 0.12307 (5) 0.00960 (11)
O1 0.28281 (5) 0.23098 (14) 0.20444 (12) 0.0126 (3)
H1A 0.2911 0.3217 0.2318 0.015*
H1B 0.3108 0.1830 0.2091 0.015*
O2 0.32098 (5) 0.03608 (14) 0.41612 (13) 0.0129 (3)
H2A 0.3353 0.0476 0.3639 0.019*
H2B 0.3198 −0.0467 0.4244 0.019*
O3 0.36311 (5) 0.09774 (16) 0.24321 (14) 0.0178 (3)
H3A 0.3899 0.1215 0.2683 0.027*
H3B 0.3643 0.0198 0.2163 0.027*
O4 0.13454 (5) 0.36331 (16) 0.37057 (14) 0.0180 (3)
H4A 0.1472 0.3000 0.3430 0.027*
H4B 0.1530 0.3864 0.4332 0.027*
O5 0.05044 (6) 0.30916 (18) 0.41409 (16) 0.0269 (4)
H5A 0.0775 0.3154 0.4142 0.040*
H5B 0.0476 0.3118 0.4851 0.040*
O6 0.05040 (6) 0.32700 (17) 0.66254 (16) 0.0238 (4)
H6A 0.0405 0.2579 0.6883 0.036*
H6B 0.0285 0.3765 0.6374 0.036*
O7 0.0000 0.4816 (2) 0.2500 0.0224 (5)
H7 0.0189 0.4385 0.2985 0.034*
O8 0.0000 0.1357 (2) 0.7500 0.0265 (6)
O11 0.24121 (5) 0.03290 (14) 0.00999 (12) 0.0107 (3)
O12 0.23607 (5) −0.03674 (14) 0.21857 (12) 0.0108 (3)
O13 0.21597 (5) −0.18636 (14) 0.04307 (12) 0.0103 (3)
O21 0.18181 (5) 0.26929 (14) 0.04781 (13) 0.0116 (3)
O22 0.17957 (5) 0.18469 (14) 0.25168 (12) 0.0115 (3)
O23 0.10987 (5) 0.21652 (15) 0.10779 (13) 0.0132 (3)
C1 0.16168 (7) 0.0176 (2) 0.06555 (17) 0.0104 (4)
C21 0.08235 (8) 0.2669 (2) 0.0003 (2) 0.0196 (5)
H21A 0.0615 0.1982 −0.0384 0.024*
H21B 0.1006 0.2944 −0.0548 0.024*
C22 0.05800 (9) 0.3813 (3) 0.0325 (3) 0.0292 (6)
H22A 0.0416 0.3541 0.0911 0.044*
H22B 0.0374 0.4143 −0.0380 0.044*
H22C 0.0788 0.4511 0.0656 0.044*
C2 0.0000 0.0182 (3) 0.7500 0.0228 (7)
C3 −0.02303 (10) −0.0568 (3) 0.8273 (3) 0.0394 (7)
H3C −0.0317 0.0033 0.8837 0.059*
H3D −0.0033 −0.1244 0.8701 0.059*
H3E −0.0493 −0.0990 0.7791 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ca1 0.0143 (3) 0.0066 (3) 0.0097 (3) −0.0003 (2) 0.0041 (2) 0.0006 (2)
Ca2 0.0130 (2) 0.00660 (18) 0.00840 (19) −0.00024 (15) 0.00261 (15) 0.00003 (14)
Cl1 0.0156 (2) 0.0112 (2) 0.0157 (3) −0.00233 (19) 0.00603 (19) 0.00042 (18)
Cl2 0.0205 (3) 0.0151 (2) 0.0094 (2) 0.0024 (2) 0.00041 (19) −0.00142 (18)
P1 0.0129 (3) 0.0059 (2) 0.0088 (3) 0.00034 (19) 0.00368 (19) 0.00012 (18)
P2 0.0122 (3) 0.0072 (2) 0.0097 (3) 0.00102 (19) 0.0030 (2) 0.00008 (18)
O1 0.0177 (8) 0.0088 (7) 0.0112 (7) −0.0003 (6) 0.0030 (6) −0.0011 (5)
O2 0.0160 (7) 0.0083 (7) 0.0154 (8) −0.0001 (6) 0.0054 (6) 0.0010 (6)
O3 0.0171 (8) 0.0164 (8) 0.0199 (8) 0.0005 (6) 0.0045 (6) 0.0000 (6)
O4 0.0205 (8) 0.0176 (8) 0.0152 (8) 0.0029 (6) 0.0027 (6) −0.0036 (6)
O5 0.0227 (9) 0.0291 (10) 0.0296 (10) −0.0008 (8) 0.0074 (7) −0.0014 (8)
O6 0.0200 (9) 0.0214 (9) 0.0297 (10) −0.0012 (7) 0.0053 (7) 0.0032 (7)
O7 0.0205 (12) 0.0243 (13) 0.0216 (12) 0.000 0.0032 (10) 0.000
O8 0.0306 (14) 0.0174 (12) 0.0344 (15) 0.000 0.0130 (11) 0.000
O11 0.0159 (7) 0.0068 (7) 0.0109 (7) 0.0000 (6) 0.0057 (6) 0.0007 (5)
O12 0.0146 (7) 0.0086 (7) 0.0092 (7) 0.0005 (6) 0.0027 (6) −0.0010 (5)
O13 0.0137 (7) 0.0072 (7) 0.0103 (7) 0.0009 (5) 0.0030 (6) −0.0011 (5)
O21 0.0155 (7) 0.0068 (7) 0.0135 (7) 0.0009 (6) 0.0052 (6) 0.0003 (5)
O22 0.0146 (7) 0.0095 (7) 0.0102 (7) 0.0017 (6) 0.0025 (6) −0.0010 (5)
O23 0.0130 (7) 0.0128 (7) 0.0138 (7) 0.0040 (6) 0.0031 (6) 0.0019 (6)
C1 0.0134 (10) 0.0085 (9) 0.0095 (10) −0.0008 (8) 0.0031 (8) 0.0006 (7)
C21 0.0190 (11) 0.0221 (12) 0.0155 (11) 0.0052 (9) −0.0009 (9) 0.0015 (9)
C22 0.0262 (13) 0.0223 (13) 0.0356 (15) 0.0100 (11) −0.0002 (11) 0.0030 (11)
C2 0.0166 (16) 0.0189 (17) 0.033 (2) 0.000 0.0050 (14) 0.000
C3 0.0362 (16) 0.0276 (15) 0.061 (2) 0.0062 (13) 0.0253 (15) 0.0149 (14)

Geometric parameters (Å, °)

Ca1—O1i 2.3778 (14) P2—O22 1.4834 (15)
Ca1—O1 2.3778 (14) P2—O21 1.4972 (15)
Ca1—O11 2.2278 (14) P2—O23 1.5750 (15)
Ca1—O11i 2.2278 (14) P2—C1 1.823 (2)
Ca1—O21i 2.3279 (15) O1—H1A 0.9900
Ca1—O21 2.3279 (15) O1—H1B 0.9900
Ca1—P2i 3.4915 (5) O2—H2A 0.8414
Ca1—P2 3.4915 (5) O2—H2B 0.8477
Ca1—P1i 3.4204 (5) O3—H3A 0.8560
Ca1—P1 3.4204 (5) O3—H3B 0.8554
Ca1—Ca2ii 4.1476 (4) O4—H4A 0.8541
Ca1—Ca2iii 4.1476 (4) O4—H4B 0.8536
Ca2—O1 2.5726 (15) O5—H5A 0.8468
Ca2—O2 2.4024 (15) O5—H5B 0.8525
Ca2—O11iv 2.4049 (15) O6—H6A 0.8481
Ca2—O12 2.3466 (14) O6—H6B 0.8448
Ca2—O13iii 2.3320 (15) O7—H7 0.8416
Ca2—O13iv 2.5858 (15) O8—C2 1.193 (4)
Ca2—O22 2.3158 (15) O11—Ca2ii 2.4049 (15)
Ca2—P1iv 3.0705 (6) O13—Ca2vi 2.3320 (15)
Ca2—P1iii 3.4498 (6) O13—Ca2ii 2.5858 (15)
Ca2—P2 3.4999 (7) O23—C21 1.442 (3)
Ca2—Ca2v 4.0111 (8) C21—C22 1.482 (3)
Ca2—Ca1vi 4.1476 (4) C21—H21A 0.9900
Ca2—H2A 2.8382 C21—H21B 0.9900
Ca2—H2B 2.8142 C22—H22A 0.9800
Cl1—C1 1.785 (2) C22—H22B 0.9800
Cl2—C1 1.773 (2) C22—H22C 0.9800
P1—O13 1.4851 (15) C2—C3vii 1.484 (3)
P1—O12 1.5016 (15) C2—C3 1.484 (3)
P1—O11 1.5216 (15) C3—H3C 0.9800
P1—C1 1.860 (2) C3—H3D 0.9800
P1—Ca2ii 3.0705 (6) C3—H3E 0.9800
P1—Ca2vi 3.4498 (6)
O21i—Ca1—O21 180.00 (6) P2—Ca2—Ca2v 114.135 (18)
O21i—Ca1—O11 93.40 (5) O22—Ca2—Ca1vi 112.14 (4)
O21—Ca1—O11 86.60 (5) O13iii—Ca2—Ca1vi 127.37 (4)
O21i—Ca1—O11i 86.60 (5) O2—Ca2—Ca1vi 67.31 (4)
O21—Ca1—O11i 93.40 (5) O12—Ca2—Ca1vi 66.62 (4)
O11—Ca1—O11i 180.00 (8) O11iv—Ca2—Ca1vi 25.39 (3)
O21i—Ca1—O1i 88.67 (5) O1—Ca2—Ca1vi 132.96 (4)
O21—Ca1—O1i 91.33 (5) O13iv—Ca2—Ca1vi 82.95 (3)
O11—Ca1—O1i 95.88 (5) P1iv—Ca2—Ca1vi 54.110 (11)
O11i—Ca1—O1i 84.12 (5) P1iii—Ca2—Ca1vi 147.146 (14)
O21i—Ca1—O1 91.33 (5) P2—Ca2—Ca1vi 113.429 (13)
O21—Ca1—O1 88.67 (5) Ca2v—Ca2—Ca1vi 105.887 (14)
O11—Ca1—O1 84.12 (5) O22—Ca2—H2A 146.7
O11i—Ca1—O1 95.88 (5) O13iii—Ca2—H2A 82.8
O1i—Ca1—O1 180.00 (11) O2—Ca2—H2A 15.8
O21i—Ca1—P2i 19.02 (4) O12—Ca2—H2A 78.1
O21—Ca1—P2i 160.98 (4) O11iv—Ca2—H2A 92.6
O11—Ca1—P2i 109.33 (4) O1—Ca2—H2A 63.8
O11i—Ca1—P2i 70.67 (4) O13iv—Ca2—H2A 127.9
O1i—Ca1—P2i 77.10 (4) P1iv—Ca2—H2A 113.6
O1—Ca1—P2i 102.90 (4) P1iii—Ca2—H2A 91.1
O21i—Ca1—P2 160.98 (4) P2—Ca2—H2A 128.7
O21—Ca1—P2 19.02 (4) Ca2v—Ca2—H2A 108.8
O11—Ca1—P2 70.67 (4) Ca1vi—Ca2—H2A 78.7
O11i—Ca1—P2 109.33 (4) O22—Ca2—H2B 151.6
O1i—Ca1—P2 102.90 (4) O13iii—Ca2—H2B 97.1
O1—Ca1—P2 77.10 (4) O2—Ca2—H2B 16.4
P2i—Ca1—P2 180.000 (18) O12—Ca2—H2B 73.8
O21i—Ca1—P1i 70.24 (4) O11iv—Ca2—H2B 65.8
O21—Ca1—P1i 109.76 (4) O1—Ca2—H2B 89.9
O11—Ca1—P1i 160.29 (4) O13iv—Ca2—H2B 112.0
O11i—Ca1—P1i 19.71 (4) P1iv—Ca2—H2B 89.9
O1i—Ca1—P1i 73.49 (4) P1iii—Ca2—H2B 111.4
O1—Ca1—P1i 106.51 (4) P2—Ca2—H2B 137.6
P2i—Ca1—P1i 52.709 (12) Ca2v—Ca2—H2B 108.2
P2—Ca1—P1i 127.291 (12) Ca1vi—Ca2—H2B 51.7
O21i—Ca1—P1 109.76 (4) H2A—Ca2—H2B 27.5
O21—Ca1—P1 70.24 (4) O13—P1—O12 114.38 (8)
O11—Ca1—P1 19.71 (4) O13—P1—O11 107.30 (8)
O11i—Ca1—P1 160.29 (4) O12—P1—O11 116.49 (8)
O1i—Ca1—P1 106.51 (4) O13—P1—C1 108.70 (9)
O1—Ca1—P1 73.49 (4) O12—P1—C1 103.32 (9)
P2i—Ca1—P1 127.291 (12) O11—P1—C1 106.05 (9)
P2—Ca1—P1 52.709 (12) O13—P1—Ca2ii 57.15 (6)
P1i—Ca1—P1 180.000 (17) O12—P1—Ca2ii 140.52 (6)
O21i—Ca1—Ca2ii 76.36 (4) O11—P1—Ca2ii 50.37 (6)
O21—Ca1—Ca2ii 103.64 (4) C1—P1—Ca2ii 116.00 (7)
O11—Ca1—Ca2ii 27.57 (4) O12—P1—Ca2vi 83.46 (6)
O11i—Ca1—Ca2ii 152.43 (4) O11—P1—Ca2vi 116.94 (6)
O1i—Ca1—Ca2ii 74.12 (4) C1—P1—Ca2vi 127.72 (7)
O1—Ca1—Ca2ii 105.88 (4) Ca2ii—P1—Ca2vi 75.679 (16)
P2i—Ca1—Ca2ii 87.845 (10) O13—P1—Ca1 136.36 (6)
P2—Ca1—Ca2ii 92.155 (10) O12—P1—Ca1 99.53 (6)
P1i—Ca1—Ca2ii 133.342 (10) C1—P1—Ca1 87.98 (6)
P1—Ca1—Ca2ii 46.658 (10) Ca2ii—P1—Ca1 79.232 (14)
O21i—Ca1—Ca2iii 103.64 (4) Ca2vi—P1—Ca1 142.808 (18)
O21—Ca1—Ca2iii 76.36 (4) O22—P2—O21 117.03 (9)
O11—Ca1—Ca2iii 152.43 (4) O22—P2—O23 106.35 (8)
O11i—Ca1—Ca2iii 27.57 (4) O21—P2—O23 112.56 (8)
O1i—Ca1—Ca2iii 105.88 (4) O22—P2—C1 109.66 (9)
O1—Ca1—Ca2iii 74.12 (4) O21—P2—C1 105.54 (9)
P2i—Ca1—Ca2iii 92.155 (10) O23—P2—C1 105.09 (9)
P2—Ca1—Ca2iii 87.845 (10) O22—P2—Ca1 103.43 (6)
P1i—Ca1—Ca2iii 46.658 (10) O23—P2—Ca1 141.89 (6)
P1—Ca1—Ca2iii 133.342 (10) C1—P2—Ca1 86.38 (7)
Ca2ii—Ca1—Ca2iii 180.000 (14) O21—P2—Ca2 100.78 (6)
O22—Ca2—O13iii 110.21 (5) O23—P2—Ca2 134.96 (6)
O22—Ca2—O2 160.19 (5) C1—P2—Ca2 93.57 (7)
O13iii—Ca2—O2 82.51 (5) Ca1—P2—Ca2 78.603 (13)
O22—Ca2—O12 78.08 (5) Ca1—O1—Ca2 126.86 (6)
O13iii—Ca2—O12 153.36 (5) Ca1—O1—H1A 105.6
O2—Ca2—O12 84.02 (5) Ca2—O1—H1A 105.6
O22—Ca2—O11iv 110.33 (5) Ca1—O1—H1B 105.6
O13iii—Ca2—O11iv 109.29 (5) Ca2—O1—H1B 105.6
O2—Ca2—O11iv 77.85 (5) H1A—O1—H1B 106.1
O12—Ca2—O11iv 90.09 (5) Ca2—O2—H2A 112.9
O22—Ca2—O1 88.74 (5) Ca2—O2—H2B 110.5
O13iii—Ca2—O1 76.76 (5) H2A—O2—H2B 105.3
O2—Ca2—O1 79.26 (5) H3A—O3—H3B 105.4
O12—Ca2—O1 78.20 (5) H4A—O4—H4B 104.4
O11iv—Ca2—O1 155.24 (5) H5A—O5—H5B 108.6
O22—Ca2—O13iv 85.30 (5) H6A—O6—H6B 106.6
O13iii—Ca2—O13iv 70.81 (6) P1—O11—Ca1 130.70 (8)
O2—Ca2—O13iv 113.76 (5) P1—O11—Ca2ii 100.46 (7)
O12—Ca2—O13iv 135.83 (5) Ca1—O11—Ca2ii 127.05 (6)
O11iv—Ca2—O13iv 57.92 (5) P1—O12—Ca2 138.76 (9)
O1—Ca2—O13iv 142.51 (5) P1—O13—Ca2vi 127.93 (8)
O22—Ca2—P1iv 97.16 (4) P1—O13—Ca2ii 94.01 (7)
O13iii—Ca2—P1iv 91.17 (4) Ca2vi—O13—Ca2ii 109.19 (6)
O2—Ca2—P1iv 97.71 (4) P2—O21—Ca1 130.53 (8)
O12—Ca2—P1iv 113.39 (4) P2—O22—Ca2 133.01 (9)
O11iv—Ca2—P1iv 29.16 (3) C21—O23—P2 123.71 (14)
O1—Ca2—P1iv 167.82 (4) Cl2—C1—Cl1 108.43 (11)
O13iv—Ca2—P1iv 28.85 (3) Cl2—C1—P1 108.63 (11)
O22—Ca2—P1iii 93.51 (4) Cl1—C1—P1 109.34 (11)
O13iii—Ca2—P1iii 19.85 (4) Cl2—C1—P2 108.74 (11)
O2—Ca2—P1iii 95.43 (4) Cl1—C1—P2 108.71 (11)
O12—Ca2—P1iii 142.04 (4) P1—C1—P2 112.90 (11)
O11iv—Ca2—P1iii 127.05 (4) O23—C21—C22 107.30 (19)
O1—Ca2—P1iii 64.53 (3) O23—C21—H21A 110.3
O13iv—Ca2—P1iii 78.92 (3) C22—C21—H21A 110.3
P1iv—Ca2—P1iii 104.321 (16) O23—C21—H21B 110.3
O22—Ca2—P2 18.06 (4) C22—C21—H21B 110.3
O13iii—Ca2—P2 116.57 (4) H21A—C21—H21B 108.5
O2—Ca2—P2 142.41 (4) C21—C22—H22A 109.5
O12—Ca2—P2 64.50 (4) C21—C22—H22B 109.5
O11iv—Ca2—P2 119.83 (4) H22A—C22—H22B 109.5
O1—Ca2—P2 74.77 (4) C21—C22—H22C 109.5
O13iv—Ca2—P2 103.35 (3) H22A—C22—H22C 109.5
P1iv—Ca2—P2 112.947 (18) H22B—C22—H22C 109.5
P1iii—Ca2—P2 97.378 (15) O8—C2—C3vii 120.89 (17)
O22—Ca2—Ca2v 98.51 (4) O8—C2—C3 120.89 (17)
O13iii—Ca2—Ca2v 37.50 (4) C3vii—C2—C3 118.2 (3)
O2—Ca2—Ca2v 100.60 (4) C2—C3—H3C 109.5
O12—Ca2—Ca2v 169.12 (4) C2—C3—H3D 109.5
O11iv—Ca2—Ca2v 81.36 (4) H3C—C3—H3D 109.5
O1—Ca2—Ca2v 112.23 (4) C2—C3—H3E 109.5
O13iv—Ca2—Ca2v 33.30 (3) H3C—C3—H3E 109.5
P1iv—Ca2—Ca2v 56.443 (13) H3D—C3—H3E 109.5
P1iii—Ca2—Ca2v 47.877 (12)

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, −y, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y, z+1/2; (v) −x+1/2, −y+1/2, −z+1; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O3 0.99 1.81 2.794 (2) 171
O1—H1A···O12iii 0.99 1.83 2.637 (2) 137
O2—H2A···O3 0.84 1.88 2.717 (2) 172
O2—H2B···O21vi 0.85 1.90 2.746 (2) 177
O3—H3A···O6v 0.86 1.93 2.782 (2) 175
O3—H3B···O4vi 0.86 1.89 2.734 (2) 169
O4—H4A···O22 0.85 2.00 2.841 (2) 166
O4—H4B···O2v 0.85 1.93 2.754 (2) 163
O5—H5A···O4 0.85 2.02 2.838 (2) 163
O5—H5B···O6 0.85 2.05 2.901 (3) 171
O6—H6A···O8 0.85 2.02 2.831 (2) 161
O6—H6B···O7viii 0.84 2.26 2.832 (2) 125
O7—H7···O5 0.84 1.98 2.799 (2) 166

Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, y−1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z+1; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2487).

References

  1. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Clearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, Vol 47, edited by K. D. Karlin, pp. 371–510. New York: Wiley.
  3. Clearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater.13, 3099–3112.
  4. Fu, R., Hu, S. & Wu, X. (2007). Cryst. Growth Des.7, 1134–1144.
  5. Jokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011–1017.
  6. Jokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158–164.
  7. Lin, L., Zhang, T.-J., Fan, Y.-T., Ding, D.-G. & Hou, H.-W. (2007). J. Mol. Struct.837, 107–117.
  8. Mathew, M., Fowler, B. O., Breuer, E., Golomb, G., Alferiev, I. S. & Eidelman, N. (1998). Inorg. Chem.37, 6485–6494. [DOI] [PubMed]
  9. Nonius (1997). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Serre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., Bein, T., Haouas, M., Taulelle, F. & Férey, G. (2006). Chem. Mater.18, 1451–1457.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010150/xu2487sup1.cif

e-65-0m436-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010150/xu2487Isup2.hkl

e-65-0m436-Isup2.hkl (202.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES