Abstract
Given the intimate relationship between bone and bone marrow, we hypothesized that the human bone marrow may function as a source (or reservoir) of bone-forming progenitor cells. We observed a population of cells within the bone marrow which produce bone-specific or bone-related proteins. The production of these proteins was developmentally regulated in human long-term bone marrow cell cultures; the bone protein-producing cells (BPPC) are observed under serum-free, short-term culture conditions, respond to bone-related and not hematopoietic growth factors, and are derived from a population of low-density, nonadherent, My10-negative (or low My10 density), marrow cells (My10 is an antigen found on most hematopoietic progenitor cells). Cultivation of marrow-derived BPPC in secondary, serum-containing cultures results in their differentiation into osteoblastlike cells. At this stage of development, BPPC produce an extracellular matrix which incorporates both bone-related proteins and radiolabeled calcium. Human bone marrow BPPC thus represent a newly described cell phenotype important to both bone and hematopoietic cell biology.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
- Ashton B. A., Eaglesom C. C., Bab I., Owen M. E. Distribution of fibroblastic colony-forming cells in rabbit bone marrow and assay of their osteogenic potential by an in vivo diffusion chamber method. Calcif Tissue Int. 1984 Jan;36(1):83–86. doi: 10.1007/BF02405298. [DOI] [PubMed] [Google Scholar]
- Bab I., Ashton B. A., Gazit D., Marx G., Williamson M. C., Owen M. E. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci. 1986 Aug;84:139–151. doi: 10.1242/jcs.84.1.139. [DOI] [PubMed] [Google Scholar]
- Benayahu D., Kletter Y., Zipori D., Wientroub S. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol. 1989 Jul;140(1):1–7. doi: 10.1002/jcp.1041400102. [DOI] [PubMed] [Google Scholar]
- Bleiberg I., Ricciardone M. D., Reddi H. A., McCarthy K. F. New bone formation and bone marrow differentiation induced in rats by extracellular bone matrix implantation: effect of local preirradiation on the process. Exp Hematol. 1987 May;15(4):309–315. [PubMed] [Google Scholar]
- Castro-Malaspina H., Gay R. E., Resnick G., Kapoor N., Meyers P., Chiarieri D., McKenzie S., Broxmeyer H. E., Moore M. A. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. 1980 Aug;56(2):289–301. [PubMed] [Google Scholar]
- Castro-Malaspina H., Rabellino E. M., Yen A., Nachman R. L., Moore M. A. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood. 1981 Apr;57(4):781–787. [PubMed] [Google Scholar]
- Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
- Dexter T. M., Lajtha L. G. Proliferation of haemopoietic stem cells in vitro. Br J Haematol. 1974 Dec;28(4):525–530. doi: 10.1111/j.1365-2141.1974.tb06671.x. [DOI] [PubMed] [Google Scholar]
- Dexter T. M. Stromal cell associated haemopoiesis. J Cell Physiol Suppl. 1982;1:87–94. doi: 10.1002/jcp.1041130414. [DOI] [PubMed] [Google Scholar]
- FISCHMAN D. A., HAY E. D. Origin of osteoclasts from mononuclear leucocytes in regenerating newt limbs. Anat Rec. 1962 Aug;143:329–337. doi: 10.1002/ar.1091430402. [DOI] [PubMed] [Google Scholar]
- Foon K. A., Gale R. P., Todd R. F., 3rd Recent advances in the immunologic classification of leukemia. Semin Hematol. 1986 Oct;23(4):257–283. [PubMed] [Google Scholar]
- Friedenstein A. J., Chailakhyan R. K., Latsinik N. V., Panasyuk A. F., Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974 Apr;17(4):331–340. doi: 10.1097/00007890-197404000-00001. [DOI] [PubMed] [Google Scholar]
- Gartner S., Kaplan H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4756–4759. doi: 10.1073/pnas.77.8.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gospodarowicz D., Delgado D., Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4094–4098. doi: 10.1073/pnas.77.7.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gospodarowicz D., Ill C. Extracellular matrix and control of proliferation of vascular endothelial cells. J Clin Invest. 1980 Jun;65(6):1351–1364. doi: 10.1172/JCI109799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattersley G., Chambers T. J. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation. Endocrinology. 1989 Apr;124(4):1689–1696. doi: 10.1210/endo-124-4-1689. [DOI] [PubMed] [Google Scholar]
- Holland P. W., Harper S. J., McVey J. H., Hogan B. L. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol. 1987 Jul;105(1):473–482. doi: 10.1083/jcb.105.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horton M. A., Lewis D., McNulty K., Pringle J. A., Chambers T. J. Monoclonal antibodies to osteoclastomas (giant cell bone tumors): definition of osteoclast-specific cellular antigens. Cancer Res. 1985 Nov;45(11 Pt 2):5663–5669. [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Jotereau F. V., Le Douarin N. M. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev Biol. 1978 Apr;63(2):253–265. doi: 10.1016/0012-1606(78)90132-x. [DOI] [PubMed] [Google Scholar]
- Knospe W. H., Husseini S. G., Fried W. Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells. Blood. 1989 Jul;74(1):66–70. [PubMed] [Google Scholar]
- Le Douarin N. M. A Feulgen-positive nucleolus. Exp Cell Res. 1973 Mar 15;77(1):459–468. doi: 10.1016/0014-4827(73)90600-9. [DOI] [PubMed] [Google Scholar]
- Long M. W., Heffner C. H. Detection of human megakaryocyte antigens by solid-phase radioimmunoassay. Exp Hematol. 1988 Jan;16(1):62–70. [PubMed] [Google Scholar]
- Long M. W., Hutchinson R. J., Gragowski L. L., Heffner C. H., Emerson S. G. Synergistic regulation of human megakaryocyte development. J Clin Invest. 1988 Nov;82(5):1779–1786. doi: 10.1172/JCI113791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long M. W., Shapiro D. N. Immune regulation of in vitro murine megakaryocyte development. Role of T lymphocytes and Ia antigen expression. J Exp Med. 1985 Dec 1;162(6):2053–2067. doi: 10.1084/jem.162.6.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luria E. A., Owen M. E., Friedenstein A. J., Morris J. F., Kuznetsow S. A. Bone formation in organ cultures of bone marrow. Cell Tissue Res. 1987 May;248(2):449–454. doi: 10.1007/BF00218212. [DOI] [PubMed] [Google Scholar]
- Mardon H. J., Bee J., von der Mark K., Owen M. E. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell Tissue Res. 1987 Oct;250(1):157–165. doi: 10.1007/BF00214667. [DOI] [PubMed] [Google Scholar]
- Massagué J. The TGF-beta family of growth and differentiation factors. Cell. 1987 May 22;49(4):437–438. doi: 10.1016/0092-8674(87)90443-0. [DOI] [PubMed] [Google Scholar]
- Muthukumaran N., Reddi A. H. Bone matrix-induced local bone induction. Clin Orthop Relat Res. 1985 Nov;(200):159–164. [PubMed] [Google Scholar]
- Nomura S., Wills A. J., Edwards D. R., Heath J. K., Hogan B. L. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol. 1988 Feb;106(2):441–450. doi: 10.1083/jcb.106.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen M. E., Cavé J., Joyner C. J. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci. 1987 Jun;87(Pt 5):731–738. doi: 10.1242/jcs.87.5.731. [DOI] [PubMed] [Google Scholar]
- Owen M., Friedenstein A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60. doi: 10.1002/9780470513637.ch4. [DOI] [PubMed] [Google Scholar]
- Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puchtler H., Meloan S. N. Demonstration of phosphates in calcium deposits: a modification of von Kossa's reaction. Histochemistry. 1978 Jul 12;56(3-4):177–185. doi: 10.1007/BF00495978. [DOI] [PubMed] [Google Scholar]
- Roberts R., Gallagher J., Spooncer E., Allen T. D., Bloomfield F., Dexter T. M. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature. 1988 Mar 24;332(6162):376–378. doi: 10.1038/332376a0. [DOI] [PubMed] [Google Scholar]
- Robey P. G., Young M. F., Flanders K. C., Roche N. S., Kondaiah P., Reddi A. H., Termine J. D., Sporn M. B., Roberts A. B. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol. 1987 Jul;105(1):457–463. doi: 10.1083/jcb.105.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shull S., Tracy R. P., Mann K. G. Identification of a vitamin D-responsive protein on the surface of human osteosarcoma cells. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5405–5409. doi: 10.1073/pnas.86.14.5405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song Z. X., Shadduck R. K., Innes D. J., Jr, Waheed A., Quesenberry P. J. Hematopoietic factor production by a cell line (TC-1) derived from adherent murine marrow cells. Blood. 1985 Aug;66(2):273–281. [PubMed] [Google Scholar]
- Sporn M. B., Roberts A. B. Autocrine growth factors and cancer. 1985 Feb 28-Mar 6Nature. 313(6005):745–747. doi: 10.1038/313745a0. [DOI] [PubMed] [Google Scholar]
- Stenner D. D., Romberg R. W., Tracy R. P., Katzmann J. A., Riggs B. L., Mann K. G. Monoclonal antibodies to native noncollagenous bone-specific proteins. Proc Natl Acad Sci U S A. 1984 May;81(9):2868–2872. doi: 10.1073/pnas.81.9.2868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
- Todd R. F., 3rd, Bury M. J., Liu D. Y. Expression of an activation antigen, Mo3e, associated with the cellular response to migration inhibitory factor by HL-60 promyelocytes undergoing monocyte-macrophage differentiation. J Leukoc Biol. 1987 Jun;41(6):492–499. doi: 10.1002/jlb.41.6.492. [DOI] [PubMed] [Google Scholar]
- Urist M. R., DeLange R. J., Finerman G. A. Bone cell differentiation and growth factors. Science. 1983 May 13;220(4598):680–686. doi: 10.1126/science.6403986. [DOI] [PubMed] [Google Scholar]
- Urist M. R., Sato K., Brownell A. G., Malinin T. I., Lietze A., Huo Y. K., Prolo D. J., Oklund S., Finerman G. A., DeLange R. J. Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med. 1983 Jun;173(2):194–199. doi: 10.3181/00379727-173-41630. [DOI] [PubMed] [Google Scholar]