Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):m398–m399. doi: 10.1107/S1600536809008393

Dicyclo­hexyl[N-(3-meth­oxy-2-oxido­benzyl­idene)valinato-κ3 O,N,O′]tin(IV)

Hong-Jun Yang a, Yan-Qiu Dang b,*
PMCID: PMC2968808  PMID: 21582345

Abstract

In the title compound, [Sn(C6H11)2(C13H15NO4)], the Sn atom is five-coordinate and adopts a distorted trigonal-bipyramidal SnNC2O2 geometry with the O atoms in axial positions. The metal atom forms five- and six-membered chelate rings with the O,N,O′-tridentate ligand. The two cyclo­hexyl groups bound to the Sn atom adopt chair conformations, with the Sn—C bonds in equatorial positions and a mean Sn—C distance of 2.138 (3) Å.

Related literature

For background to the chemistry of organotin Schiff base complexes, see: Beltran et al. (2003); Basu Baul et al. (2007); Dakternieks et al. (1998); Tian et al. (2005, 2006, 2007, 2009). For related structures, see: Li & Tian (2008); Tian et al. (2004, 2007).graphic file with name e-65-0m398-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H11)2(C13H15NO4)]

  • M r = 534.25

  • Monoclinic, Inline graphic

  • a = 9.5354 (5) Å

  • b = 10.0011 (6) Å

  • c = 25.7662 (15) Å

  • β = 94.345 (1)°

  • V = 2450.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 295 K

  • 0.14 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.864, T max = 0.900

  • 18670 measured reflections

  • 4808 independent reflections

  • 3858 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.077

  • S = 1.04

  • 4808 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008393/sj2591sup1.cif

e-65-0m398-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008393/sj2591Isup2.hkl

e-65-0m398-Isup2.hkl (230.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Sn1—O3 2.1085 (19)
Sn1—C7 2.135 (3)
Sn1—C1 2.142 (3)
Sn1—O1 2.157 (2)
Sn1—N1 2.172 (2)
O3—Sn1—C7 95.63 (10)
O3—Sn1—C1 95.31 (9)
C7—Sn1—C1 121.20 (12)
O3—Sn1—O1 157.22 (8)
C7—Sn1—O1 92.06 (10)
C1—Sn1—O1 98.96 (10)
O3—Sn1—N1 82.79 (8)
C7—Sn1—N1 119.27 (11)
C1—Sn1—N1 119.38 (10)
O1—Sn1—N1 74.75 (8)

Acknowledgments

The authors thank the Science Foundation of Binzhou University for supporting this work (grant No. BZXYQNLG200820).

supplementary crystallographic information

Comment

Diorganotin complexes with Schiff bases derived from α-amino acids continue to received attention because of their structural variety and biological activities (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Tian et al., 2005, 2006, 2007, 2009). The structures of three dicyclohexyltin complexes with the Schiff base ligand, [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin(IV) (Tian et al., 2004), [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin(IV) (Tian et al., 2007) and [N-(5-chloro-2-oxidophenylmethylene)valinato]dicyclohexyltin(IV) (Li & Tian, 2008), have been reported. As a continuation of these studies, the structure of the title compound, (I), is reported here.

The coordination geometry of the tin atom in (I) is distorted trigonal bipyramidal with two cyclohexyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenolate O3 atom (Fig. 1). The tin atom is 0.049 (2) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length Sn1—O1 (2.157 (2) Å) was longer than that of Sn1—O3 (2.1085 (19) Å). The bond angle O1—Sn1—O3 was 157.22 (8)°, slightly larger than those found in [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin(IV) [153.84 (12)°] (Tian et al., 2004), [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin(IV) [154.9 (1)°] (Tian et al., 2007) and [N-(5-chloro-2-oxidophenylmethylene)valinato]dicyclohexyltin(IV) [155.75 (12)°] (Li & Tian, 2008). The two cyclohexyl groups bound to the tin atom adopt chair conformations with the Sn—C bonds in equatorial positions with a mean distance of 2.138 (3) Å. The monodentate mode of coordination of the carboxylate is reflected in the disparate C23—O1 and C23—O2 bond lengths of 1.289 (4) and 1.217 (4) Å, respectively.

Experimental

The title compound was prepared by the reaction of dicyclohexyltin dichloride (0.71 g, 2 mmol) with potassium N-(3-methoxy-2-hydroxyphenylmethylene)valinate (0.54 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (30 ml). The reaction mixture was refluxed for 2 h and filtered. The yellow solid, (I),obtained by removal of solvent under reduced pressure, was recrystallized from methanol. Crystals of (I) suitable for X-ray measurements were obtained from dichloromethane-hexane (1:1, V/V) by slow evaporation at room temperature (yield 70%, m.p. 477–478 K).

Refinement

H atoms were placed at calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Sn(C6H11)2(C13H15NO4)] F(000) = 1104
Mr = 534.25 Dx = 1.448 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6982 reflections
a = 9.5354 (5) Å θ = 2.3–27.2°
b = 10.0011 (6) Å µ = 1.07 mm1
c = 25.7662 (15) Å T = 295 K
β = 94.345 (1)° Block, yellow
V = 2450.1 (2) Å3 0.14 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer 4808 independent reflections
Radiation source: fine-focus sealed tube 3858 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −11→11
Tmin = 0.864, Tmax = 0.900 k = −12→12
18670 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.2424P] where P = (Fo2 + 2Fc2)/3
4808 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.13269 (2) −0.000285 (19) 0.145122 (7) 0.03534 (8)
N1 0.0746 (2) 0.2013 (2) 0.16634 (9) 0.0356 (5)
O1 0.0070 (2) −0.0239 (2) 0.21069 (8) 0.0469 (5)
O3 0.2487 (2) 0.1017 (2) 0.09093 (8) 0.0438 (5)
O4 0.4527 (3) 0.1480 (2) 0.03098 (9) 0.0557 (6)
O2 −0.1148 (3) 0.0751 (2) 0.26995 (8) 0.0583 (6)
C19 0.2495 (3) 0.3275 (3) 0.12149 (11) 0.0380 (7)
C13 0.2988 (3) 0.2235 (3) 0.09125 (11) 0.0369 (6)
C25 −0.0502 (3) 0.0784 (3) 0.23099 (12) 0.0431 (7)
C14 0.4080 (3) 0.2540 (3) 0.05838 (12) 0.0421 (7)
C7 0.3103 (3) −0.0932 (3) 0.18570 (12) 0.0437 (7)
H7 0.2734 −0.1674 0.2054 0.052*
C21 −0.0371 (3) 0.2112 (3) 0.20312 (11) 0.0405 (7)
H21 −0.0090 0.2795 0.2292 0.049*
C20 0.1414 (3) 0.3096 (3) 0.15649 (11) 0.0407 (7)
H20 0.1160 0.3856 0.1744 0.049*
C1 0.0021 (3) −0.1073 (3) 0.08792 (11) 0.0389 (7)
H1 −0.0630 −0.0432 0.0703 0.047*
C16 0.4606 (4) 0.3813 (3) 0.05633 (13) 0.0515 (8)
H16 0.5319 0.3996 0.0347 0.062*
C18 0.3057 (4) 0.4573 (3) 0.11829 (13) 0.0513 (8)
H18 0.2718 0.5257 0.1384 0.062*
C2 −0.0854 (4) −0.2153 (3) 0.11246 (13) 0.0536 (8)
H2A −0.0232 −0.2777 0.1316 0.064*
H2B −0.1453 −0.1742 0.1368 0.064*
C24 −0.2320 (4) 0.1559 (4) 0.13339 (15) 0.0630 (10)
H24A −0.2323 0.0666 0.1471 0.095*
H24B −0.1710 0.1600 0.1055 0.095*
H24C −0.3257 0.1803 0.1206 0.095*
C6 0.0909 (4) −0.1689 (4) 0.04705 (13) 0.0544 (9)
H6A 0.1404 −0.0984 0.0301 0.065*
H6B 0.1605 −0.2282 0.0641 0.065*
C17 0.4089 (4) 0.4834 (3) 0.08615 (15) 0.0585 (9)
H17 0.4450 0.5695 0.0841 0.070*
C5 0.0011 (4) −0.2466 (4) 0.00641 (13) 0.0648 (10)
H5A −0.0607 −0.1852 −0.0135 0.078*
H5B 0.0614 −0.2891 −0.0174 0.078*
C15 0.5593 (5) 0.1721 (4) −0.00362 (16) 0.0716 (12)
H15A 0.5818 0.0900 −0.0204 0.107*
H15B 0.6418 0.2061 0.0156 0.107*
H15C 0.5261 0.2363 −0.0294 0.107*
C10 0.6078 (4) −0.1408 (4) 0.21768 (18) 0.0750 (12)
H10A 0.6546 −0.0709 0.1994 0.090*
H10B 0.6794 −0.1924 0.2376 0.090*
C22 −0.1800 (3) 0.2520 (3) 0.17606 (13) 0.0486 (8)
H22 −0.2483 0.2490 0.2026 0.058*
C23 −0.1805 (4) 0.3944 (4) 0.15532 (16) 0.0703 (11)
H23A −0.2718 0.4149 0.1390 0.105*
H23B −0.1113 0.4028 0.1303 0.105*
H23C −0.1589 0.4553 0.1836 0.105*
C3 −0.1757 (4) −0.2901 (4) 0.07076 (15) 0.0634 (10)
H3A −0.2281 −0.3597 0.0870 0.076*
H3B −0.2427 −0.2287 0.0534 0.076*
C8 0.4100 (4) −0.1546 (4) 0.14941 (15) 0.0752 (12)
H8A 0.4481 −0.0847 0.1285 0.090*
H8B 0.3586 −0.2165 0.1261 0.090*
C11 0.5120 (5) −0.0791 (6) 0.2538 (2) 0.1082 (19)
H11A 0.5648 −0.0166 0.2765 0.130*
H11B 0.4752 −0.1482 0.2754 0.130*
C4 −0.0867 (4) −0.3524 (4) 0.03086 (15) 0.0636 (10)
H4A −0.0253 −0.4196 0.0475 0.076*
H4B −0.1472 −0.3959 0.0040 0.076*
C9 0.5308 (5) −0.2287 (5) 0.17957 (18) 0.0885 (15)
H9A 0.4934 −0.3044 0.1976 0.106*
H9B 0.5951 −0.2626 0.1553 0.106*
C12 0.3897 (5) −0.0058 (5) 0.22460 (19) 0.0894 (16)
H12A 0.3260 0.0266 0.2494 0.107*
H12B 0.4257 0.0711 0.2069 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.04106 (12) 0.03172 (11) 0.03376 (12) −0.00233 (9) 0.00626 (8) 0.00054 (9)
N1 0.0449 (14) 0.0325 (13) 0.0302 (12) −0.0001 (11) 0.0070 (10) 0.0002 (10)
O1 0.0621 (14) 0.0376 (12) 0.0432 (12) 0.0028 (10) 0.0181 (11) 0.0065 (9)
O3 0.0596 (13) 0.0322 (11) 0.0419 (11) −0.0084 (10) 0.0176 (10) −0.0006 (9)
O4 0.0687 (15) 0.0456 (13) 0.0569 (14) −0.0032 (11) 0.0323 (12) 0.0013 (11)
O2 0.0775 (16) 0.0562 (15) 0.0449 (13) 0.0047 (13) 0.0294 (12) 0.0076 (11)
C19 0.0478 (17) 0.0313 (15) 0.0347 (15) −0.0052 (13) 0.0023 (13) 0.0023 (12)
C13 0.0415 (16) 0.0360 (16) 0.0328 (15) −0.0029 (13) 0.0002 (12) 0.0041 (12)
C25 0.0475 (17) 0.0476 (19) 0.0344 (16) 0.0008 (15) 0.0036 (13) 0.0056 (14)
C14 0.0479 (18) 0.0403 (17) 0.0389 (16) −0.0024 (14) 0.0079 (14) 0.0069 (13)
C7 0.0422 (17) 0.0491 (18) 0.0397 (17) −0.0025 (14) 0.0020 (13) 0.0116 (14)
C21 0.0497 (18) 0.0377 (16) 0.0352 (16) 0.0014 (14) 0.0111 (13) −0.0014 (13)
C20 0.0511 (18) 0.0322 (16) 0.0390 (16) 0.0006 (13) 0.0044 (14) −0.0040 (13)
C1 0.0394 (16) 0.0370 (16) 0.0403 (16) −0.0031 (13) 0.0039 (13) −0.0018 (13)
C16 0.053 (2) 0.050 (2) 0.053 (2) −0.0122 (16) 0.0121 (16) 0.0095 (16)
C18 0.069 (2) 0.0362 (16) 0.0493 (19) −0.0062 (16) 0.0094 (17) −0.0008 (14)
C2 0.057 (2) 0.050 (2) 0.056 (2) −0.0115 (16) 0.0162 (16) −0.0037 (16)
C24 0.053 (2) 0.065 (2) 0.070 (2) 0.0019 (18) −0.0031 (18) 0.005 (2)
C6 0.056 (2) 0.062 (2) 0.0471 (19) −0.0125 (17) 0.0121 (16) −0.0123 (17)
C17 0.076 (2) 0.0365 (19) 0.065 (2) −0.0181 (17) 0.0140 (19) 0.0019 (16)
C5 0.078 (3) 0.068 (3) 0.049 (2) −0.011 (2) 0.0044 (19) −0.0184 (18)
C15 0.083 (3) 0.066 (3) 0.072 (3) −0.005 (2) 0.045 (2) −0.003 (2)
C10 0.047 (2) 0.082 (3) 0.095 (3) −0.001 (2) −0.004 (2) 0.014 (3)
C22 0.0503 (19) 0.0499 (19) 0.0473 (18) 0.0109 (15) 0.0135 (15) 0.0059 (15)
C23 0.075 (3) 0.053 (2) 0.081 (3) 0.019 (2) −0.001 (2) 0.012 (2)
C3 0.057 (2) 0.056 (2) 0.077 (3) −0.0166 (18) 0.0062 (19) −0.009 (2)
C8 0.078 (3) 0.084 (3) 0.061 (2) 0.033 (2) −0.011 (2) −0.021 (2)
C11 0.093 (3) 0.133 (5) 0.091 (3) 0.037 (3) −0.045 (3) −0.041 (3)
C4 0.071 (2) 0.051 (2) 0.068 (2) −0.0086 (19) −0.003 (2) −0.0153 (19)
C9 0.072 (3) 0.097 (4) 0.094 (3) 0.036 (3) −0.017 (2) −0.019 (3)
C12 0.085 (3) 0.097 (4) 0.082 (3) 0.026 (3) −0.026 (2) −0.044 (3)

Geometric parameters (Å, °)

Sn1—O3 2.1085 (19) C24—H24B 0.9600
Sn1—C7 2.135 (3) C24—H24C 0.9600
Sn1—C1 2.142 (3) C6—C5 1.516 (4)
Sn1—O1 2.157 (2) C6—H6A 0.9700
Sn1—N1 2.172 (2) C6—H6B 0.9700
N1—C20 1.292 (4) C17—H17 0.9300
N1—C21 1.481 (3) C5—C4 1.515 (5)
O1—C25 1.289 (4) C5—H5A 0.9700
O3—C13 1.309 (3) C5—H5B 0.9700
O4—C14 1.360 (4) C15—H15A 0.9600
O4—C15 1.422 (4) C15—H15B 0.9600
O2—C25 1.217 (4) C15—H15C 0.9600
C19—C13 1.402 (4) C10—C9 1.472 (6)
C19—C18 1.409 (4) C10—C11 1.487 (6)
C19—C20 1.431 (4) C10—H10A 0.9700
C13—C14 1.424 (4) C10—H10B 0.9700
C25—C21 1.520 (4) C22—C23 1.521 (5)
C14—C16 1.370 (4) C22—H22 0.9800
C7—C12 1.492 (5) C23—H23A 0.9600
C7—C8 1.512 (5) C23—H23B 0.9600
C7—H7 0.9800 C23—H23C 0.9600
C21—C22 1.538 (4) C3—C4 1.516 (5)
C21—H21 0.9800 C3—H3A 0.9700
C20—H20 0.9300 C3—H3B 0.9700
C1—C6 1.530 (4) C8—C9 1.531 (5)
C1—C2 1.530 (4) C8—H8A 0.9700
C1—H1 0.9800 C8—H8B 0.9700
C16—C17 1.390 (5) C11—C12 1.527 (6)
C16—H16 0.9300 C11—H11A 0.9700
C18—C17 1.359 (5) C11—H11B 0.9700
C18—H18 0.9300 C4—H4A 0.9700
C2—C3 1.522 (5) C4—H4B 0.9700
C2—H2A 0.9700 C9—H9A 0.9700
C2—H2B 0.9700 C9—H9B 0.9700
C24—C22 1.515 (5) C12—H12A 0.9700
C24—H24A 0.9600 C12—H12B 0.9700
O3—Sn1—C7 95.63 (10) C1—C6—H6B 109.3
O3—Sn1—C1 95.31 (9) H6A—C6—H6B 108.0
C7—Sn1—C1 121.20 (12) C18—C17—C16 119.9 (3)
O3—Sn1—O1 157.22 (8) C18—C17—H17 120.0
C7—Sn1—O1 92.06 (10) C16—C17—H17 120.0
C1—Sn1—O1 98.96 (10) C4—C5—C6 111.8 (3)
O3—Sn1—N1 82.79 (8) C4—C5—H5A 109.3
C7—Sn1—N1 119.27 (11) C6—C5—H5A 109.3
C1—Sn1—N1 119.38 (10) C4—C5—H5B 109.3
O1—Sn1—N1 74.75 (8) C6—C5—H5B 109.3
C20—N1—C21 117.3 (2) H5A—C5—H5B 107.9
C20—N1—Sn1 126.18 (19) O4—C15—H15A 109.5
C21—N1—Sn1 115.66 (17) O4—C15—H15B 109.5
C25—O1—Sn1 120.55 (19) H15A—C15—H15B 109.5
C13—O3—Sn1 130.97 (18) O4—C15—H15C 109.5
C14—O4—C15 117.4 (3) H15A—C15—H15C 109.5
C13—C19—C18 120.4 (3) H15B—C15—H15C 109.5
C13—C19—C20 123.1 (3) C9—C10—C11 111.5 (4)
C18—C19—C20 116.6 (3) C9—C10—H10A 109.3
O3—C13—C19 123.8 (3) C11—C10—H10A 109.3
O3—C13—C14 118.6 (3) C9—C10—H10B 109.3
C19—C13—C14 117.6 (3) C11—C10—H10B 109.3
O2—C25—O1 124.7 (3) H10A—C10—H10B 108.0
O2—C25—C21 118.6 (3) C24—C22—C23 110.3 (3)
O1—C25—C21 116.7 (3) C24—C22—C21 113.0 (3)
O4—C14—C16 125.1 (3) C23—C22—C21 112.7 (3)
O4—C14—C13 114.4 (3) C24—C22—H22 106.8
C16—C14—C13 120.5 (3) C23—C22—H22 106.8
C12—C7—C8 110.1 (3) C21—C22—H22 106.8
C12—C7—Sn1 114.7 (2) C22—C23—H23A 109.5
C8—C7—Sn1 112.7 (2) C22—C23—H23B 109.5
C12—C7—H7 106.3 H23A—C23—H23B 109.5
C8—C7—H7 106.3 C22—C23—H23C 109.5
Sn1—C7—H7 106.3 H23A—C23—H23C 109.5
N1—C21—C25 109.4 (2) H23B—C23—H23C 109.5
N1—C21—C22 112.5 (2) C4—C3—C2 111.4 (3)
C25—C21—C22 110.1 (3) C4—C3—H3A 109.3
N1—C21—H21 108.2 C2—C3—H3A 109.3
C25—C21—H21 108.2 C4—C3—H3B 109.3
C22—C21—H21 108.2 C2—C3—H3B 109.3
N1—C20—C19 128.2 (3) H3A—C3—H3B 108.0
N1—C20—H20 115.9 C7—C8—C9 111.5 (3)
C19—C20—H20 115.9 C7—C8—H8A 109.3
C6—C1—C2 110.3 (3) C9—C8—H8A 109.3
C6—C1—Sn1 110.57 (19) C7—C8—H8B 109.3
C2—C1—Sn1 112.0 (2) C9—C8—H8B 109.3
C6—C1—H1 107.9 H8A—C8—H8B 108.0
C2—C1—H1 107.9 C10—C11—C12 112.0 (4)
Sn1—C1—H1 107.9 C10—C11—H11A 109.2
C14—C16—C17 121.0 (3) C12—C11—H11A 109.2
C14—C16—H16 119.5 C10—C11—H11B 109.2
C17—C16—H16 119.5 C12—C11—H11B 109.2
C17—C18—C19 120.6 (3) H11A—C11—H11B 107.9
C17—C18—H18 119.7 C5—C4—C3 110.5 (3)
C19—C18—H18 119.7 C5—C4—H4A 109.5
C3—C2—C1 110.6 (3) C3—C4—H4A 109.5
C3—C2—H2A 109.5 C5—C4—H4B 109.5
C1—C2—H2A 109.5 C3—C4—H4B 109.5
C3—C2—H2B 109.5 H4A—C4—H4B 108.1
C1—C2—H2B 109.5 C10—C9—C8 111.6 (4)
H2A—C2—H2B 108.1 C10—C9—H9A 109.3
C22—C24—H24A 109.5 C8—C9—H9A 109.3
C22—C24—H24B 109.5 C10—C9—H9B 109.3
H24A—C24—H24B 109.5 C8—C9—H9B 109.3
C22—C24—H24C 109.5 H9A—C9—H9B 108.0
H24A—C24—H24C 109.5 C7—C12—C11 112.3 (4)
H24B—C24—H24C 109.5 C7—C12—H12A 109.1
C5—C6—C1 111.6 (3) C11—C12—H12A 109.1
C5—C6—H6A 109.3 C7—C12—H12B 109.1
C1—C6—H6A 109.3 C11—C12—H12B 109.1
C5—C6—H6B 109.3 H12A—C12—H12B 107.9
O3—Sn1—N1—C20 −20.0 (2) O2—C25—C21—N1 164.9 (3)
C7—Sn1—N1—C20 72.5 (3) O1—C25—C21—N1 −16.1 (4)
C1—Sn1—N1—C20 −112.0 (3) O2—C25—C21—C22 −70.9 (4)
O1—Sn1—N1—C20 156.2 (3) O1—C25—C21—C22 108.0 (3)
O3—Sn1—N1—C21 171.3 (2) C21—N1—C20—C19 −177.8 (3)
C7—Sn1—N1—C21 −96.3 (2) Sn1—N1—C20—C19 13.6 (5)
C1—Sn1—N1—C21 79.2 (2) C13—C19—C20—N1 0.6 (5)
O1—Sn1—N1—C21 −12.62 (19) C18—C19—C20—N1 −179.7 (3)
O3—Sn1—O1—C25 13.5 (4) O3—Sn1—C1—C6 46.7 (2)
C7—Sn1—O1—C25 123.3 (2) C7—Sn1—C1—C6 −53.2 (3)
C1—Sn1—O1—C25 −114.6 (2) O1—Sn1—C1—C6 −151.1 (2)
N1—Sn1—O1—C25 3.5 (2) N1—Sn1—C1—C6 131.4 (2)
C7—Sn1—O3—C13 −94.7 (3) O3—Sn1—C1—C2 170.2 (2)
C1—Sn1—O3—C13 143.1 (3) C7—Sn1—C1—C2 70.4 (2)
O1—Sn1—O3—C13 14.4 (4) O1—Sn1—C1—C2 −27.6 (2)
N1—Sn1—O3—C13 24.1 (3) N1—Sn1—C1—C2 −105.1 (2)
Sn1—O3—C13—C19 −20.1 (4) O4—C14—C16—C17 −179.5 (3)
Sn1—O3—C13—C14 161.1 (2) C13—C14—C16—C17 0.0 (5)
C18—C19—C13—O3 −177.8 (3) C13—C19—C18—C17 −0.4 (5)
C20—C19—C13—O3 2.0 (5) C20—C19—C18—C17 179.8 (3)
C18—C19—C13—C14 1.0 (4) C6—C1—C2—C3 −55.8 (4)
C20—C19—C13—C14 −179.3 (3) Sn1—C1—C2—C3 −179.4 (2)
Sn1—O1—C25—O2 −175.0 (3) C2—C1—C6—C5 54.9 (4)
Sn1—O1—C25—C21 6.1 (4) Sn1—C1—C6—C5 179.3 (3)
C15—O4—C14—C16 −2.0 (5) C19—C18—C17—C16 −0.4 (6)
C15—O4—C14—C13 178.5 (3) C14—C16—C17—C18 0.6 (6)
O3—C13—C14—O4 −2.4 (4) C1—C6—C5—C4 −55.1 (4)
C19—C13—C14—O4 178.8 (3) N1—C21—C22—C24 58.4 (4)
O3—C13—C14—C16 178.0 (3) C25—C21—C22—C24 −63.9 (3)
C19—C13—C14—C16 −0.8 (4) N1—C21—C22—C23 −67.5 (4)
O3—Sn1—C7—C12 80.8 (3) C25—C21—C22—C23 170.2 (3)
C1—Sn1—C7—C12 −179.5 (3) C1—C2—C3—C4 57.4 (4)
O1—Sn1—C7—C12 −77.7 (3) C12—C7—C8—C9 54.6 (5)
N1—Sn1—C7—C12 −4.0 (3) Sn1—C7—C8—C9 −176.1 (3)
O3—Sn1—C7—C8 −46.1 (3) C9—C10—C11—C12 −54.3 (6)
C1—Sn1—C7—C8 53.6 (3) C6—C5—C4—C3 55.4 (4)
O1—Sn1—C7—C8 155.4 (3) C2—C3—C4—C5 −56.7 (4)
N1—Sn1—C7—C8 −131.0 (3) C11—C10—C9—C8 55.3 (6)
C20—N1—C21—C25 −151.0 (3) C7—C8—C9—C10 −56.0 (5)
Sn1—N1—C21—C25 18.8 (3) C8—C7—C12—C11 −53.9 (5)
C20—N1—C21—C22 86.3 (3) Sn1—C7—C12—C11 177.8 (4)
Sn1—N1—C21—C22 −103.9 (2) C10—C11—C12—C7 54.3 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2591).

References

  1. Basu Baul, T. S., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  2. Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J.9, 2291–2306. [DOI] [PubMed]
  3. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Li, J.-P. & Tian, L.-J. (2008). Acta Cryst. E64, m98. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem.18, 483–484.
  9. Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem.19, 980–987.
  10. Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem.20, 74–80.
  11. Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem.25, 312–318.
  12. Tian, L., Yang, H., Zheng, X., Ni, Z., Yan, D., Tu, L. & Jiang, J. (2009). Appl. Organomet. Chem.22, 24–31.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008393/sj2591sup1.cif

e-65-0m398-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008393/sj2591Isup2.hkl

e-65-0m398-Isup2.hkl (230.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES