Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o688. doi: 10.1107/S1600536809007466

3-Bromo-N′-(3,5-dibromo-2-hydroxy­benzyl­idene)benzohydrazide methanol solvate

Yi-Jun Wei a,*, Feng-Wu Wang a, Qi-Yong Zhu a
PMCID: PMC2968809  PMID: 21582430

Abstract

The title compound, C14H9Br3N2O2·CH4O, was prepared by the reaction of 3,5-dibromo-2-hydroxy­benzaldehyde and 3-bromo­benzohydrazide in methanol. The asymmetric unit of the crystal consists of a Schiff base mol­ecule and a methanol mol­ecule of crystallization. The dihedral angle between the two benzene rings is 5.5 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, pairs of adjacent Schiff base mol­ecules are linked by two methanol mol­ecules through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Annigeri et al. (2002); Lodeiro et al. (2003); Rao et al. (2003). For related structures, see: Bao & Wei (2008); Odabaşoğlu et al. (2007); Wang et al. (2006); Wei et al. (2008); Yathirajan et al. (2007); Yehye et al. (2008); Zhu et al. (2009).graphic file with name e-65-0o688-scheme1.jpg

Experimental

Crystal data

  • C14H9Br3N2O2·CH4O

  • M r = 509.00

  • Triclinic, Inline graphic

  • a = 8.900 (1) Å

  • b = 9.366 (1) Å

  • c = 11.392 (2) Å

  • α = 95.043 (2)°

  • β = 111.048 (2)°

  • γ = 99.584 (2)°

  • V = 862.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.03 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.216, T max = 0.245

  • 5016 measured reflections

  • 3606 independent reflections

  • 2582 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.03

  • 3606 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007466/sj2587sup1.cif

e-65-0o688-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007466/sj2587Isup2.hkl

e-65-0o688-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.559 (3) 145
O3—H3⋯O2i 0.82 1.97 2.767 (4) 164
N2—H2⋯O3ii 0.90 (3) 1.986 (18) 2.848 (4) 160 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of the Education Office of Anhui Province, China, for financial support (grant No. KJ2007A126ZC).

supplementary crystallographic information

Comment

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Lodeiro et al., 2003; Annigeri et al., 2002; Rao et al., 2003). We have previously reported some Schiff bases and their complexes (Wei et al., 2008; Wang et al., 2006). In this paper, the preparation and crystal structure of the new Schiff base title compound (I), Fig 1, is reported.

The C═N bond length in the title molecule is comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). All bond lengths are within normal ranges and are comparable to those observed in the related compounds (Zhu et al., 2009; Bao & Wei, 2008). The dihedral angle between C1—C6 and C9—C14 phenyl rings is 5.5 (2)°, indicating that the molecule is nearly coplanar. An intramolecular O1—H1···N1 hydrogen bond is observed and may contribute to the overall planarity of the molecule.

In the crystal structure, pairs of adjacent Schiff base molecules are linked by two methanol molecules through intermolecular N2—H2···O3 and O3—H3···O2 hydrogen bonds, Table 1, Fig. 2.

Experimental

3,5-Dibromo-2-hydroxybenzaldehyde (1.0 mmol) and 3-bromobenzohydrazide (1.0 mmol) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping this solution in air for a week, colourless block-shaped crystals were formed.

Refinement

The H atom bound to N2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically (C—H = 0.93-0.96 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(O and C15). The crystals were small and weakly diffracting which accounts for the low measured data fraction of 96% out to θ = 27.0 °.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates an intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

Molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9Br3N2O2·CH4O Z = 2
Mr = 509.00 F(000) = 492
Triclinic, P1 Dx = 1.960 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.900 (1) Å Cell parameters from 1965 reflections
b = 9.366 (1) Å θ = 2.5–28.0°
c = 11.392 (2) Å µ = 7.03 mm1
α = 95.043 (2)° T = 298 K
β = 111.048 (2)° Block, colorless
γ = 99.584 (2)° 0.23 × 0.20 × 0.20 mm
V = 862.6 (2) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3606 independent reflections
Radiation source: fine-focus sealed tube 2582 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.216, Tmax = 0.245 k = −11→11
5016 measured reflections l = −12→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.2522P] where P = (Fo2 + 2Fc2)/3
3606 reflections (Δ/σ)max = 0.001
214 parameters Δρmax = 0.45 e Å3
1 restraint Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.70334 (5) 1.00574 (5) −0.37638 (4) 0.07063 (16)
Br2 1.39490 (6) 1.16831 (6) −0.18075 (5) 0.08319 (19)
Br3 1.13101 (5) 0.31103 (4) 0.49994 (3) 0.05564 (13)
O1 0.7708 (3) 0.8094 (3) −0.1804 (2) 0.0524 (6)
H1 0.7891 0.7546 −0.1269 0.079*
O2 0.6880 (3) 0.5145 (3) −0.0140 (2) 0.0564 (7)
O3 0.7124 (3) 0.4000 (3) 0.7628 (2) 0.0634 (7)
H3 0.6886 0.4388 0.8192 0.095*
N1 0.9495 (3) 0.7027 (3) 0.0069 (2) 0.0402 (6)
N2 0.9553 (4) 0.6172 (3) 0.0991 (3) 0.0410 (6)
C1 1.0672 (4) 0.8813 (3) −0.0850 (3) 0.0351 (7)
C2 0.9137 (4) 0.8887 (4) −0.1748 (3) 0.0378 (7)
C3 0.9096 (4) 0.9860 (4) −0.2607 (3) 0.0425 (8)
C4 1.0505 (4) 1.0671 (4) −0.2633 (3) 0.0449 (8)
H4 1.0450 1.1288 −0.3236 0.054*
C5 1.2002 (4) 1.0569 (4) −0.1762 (3) 0.0460 (8)
C6 1.2101 (4) 0.9668 (4) −0.0856 (3) 0.0424 (8)
H6 1.3121 0.9632 −0.0251 0.051*
C7 1.0795 (4) 0.7865 (3) 0.0117 (3) 0.0389 (8)
H7 1.1807 0.7877 0.0755 0.047*
C8 0.8112 (4) 0.5247 (4) 0.0818 (3) 0.0388 (7)
C9 0.8101 (4) 0.4374 (3) 0.1852 (3) 0.0365 (7)
C10 0.6573 (4) 0.3690 (4) 0.1800 (3) 0.0487 (9)
H10 0.5620 0.3809 0.1160 0.058*
C11 0.6468 (5) 0.2827 (5) 0.2705 (4) 0.0607 (11)
H11 0.5442 0.2361 0.2670 0.073*
C12 0.7878 (5) 0.2654 (4) 0.3657 (4) 0.0538 (10)
H12 0.7811 0.2077 0.4268 0.065*
C13 0.9373 (4) 0.3341 (4) 0.3692 (3) 0.0407 (8)
C14 0.9518 (4) 0.4212 (3) 0.2807 (3) 0.0375 (7)
H14 1.0550 0.4679 0.2853 0.045*
C15 0.5947 (6) 0.4070 (6) 0.6437 (4) 0.0784 (14)
H15A 0.5748 0.5045 0.6420 0.118*
H15B 0.4939 0.3389 0.6291 0.118*
H15C 0.6346 0.3822 0.5784 0.118*
H2 1.054 (3) 0.617 (5) 0.159 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0520 (3) 0.0897 (3) 0.0683 (3) 0.0262 (2) 0.0085 (2) 0.0444 (2)
Br2 0.0529 (3) 0.0928 (4) 0.0939 (4) −0.0098 (2) 0.0193 (2) 0.0505 (3)
Br3 0.0528 (2) 0.0679 (3) 0.0421 (2) 0.01579 (19) 0.00793 (17) 0.02572 (18)
O1 0.0349 (13) 0.0634 (17) 0.0562 (15) 0.0067 (11) 0.0111 (12) 0.0302 (13)
O2 0.0364 (14) 0.0847 (19) 0.0458 (14) 0.0112 (13) 0.0087 (12) 0.0325 (13)
O3 0.0423 (15) 0.087 (2) 0.0534 (15) 0.0155 (14) 0.0067 (13) 0.0188 (15)
N1 0.0430 (16) 0.0410 (16) 0.0396 (14) 0.0114 (13) 0.0152 (13) 0.0199 (12)
N2 0.0402 (16) 0.0463 (16) 0.0387 (15) 0.0110 (13) 0.0132 (13) 0.0220 (13)
C1 0.0383 (18) 0.0363 (17) 0.0315 (16) 0.0076 (14) 0.0131 (14) 0.0099 (13)
C2 0.0372 (18) 0.0398 (18) 0.0363 (17) 0.0108 (15) 0.0117 (15) 0.0102 (14)
C3 0.042 (2) 0.047 (2) 0.0378 (18) 0.0150 (16) 0.0109 (16) 0.0151 (15)
C4 0.052 (2) 0.043 (2) 0.0396 (18) 0.0100 (17) 0.0146 (17) 0.0175 (15)
C5 0.044 (2) 0.044 (2) 0.049 (2) 0.0008 (16) 0.0177 (17) 0.0164 (16)
C6 0.0371 (18) 0.0434 (19) 0.0422 (18) 0.0056 (15) 0.0094 (15) 0.0138 (15)
C7 0.0406 (19) 0.0391 (19) 0.0357 (17) 0.0119 (15) 0.0094 (15) 0.0144 (14)
C8 0.0369 (18) 0.0457 (19) 0.0398 (18) 0.0155 (15) 0.0159 (16) 0.0195 (15)
C9 0.0392 (18) 0.0391 (18) 0.0346 (16) 0.0115 (14) 0.0151 (15) 0.0124 (14)
C10 0.0339 (19) 0.061 (2) 0.054 (2) 0.0124 (17) 0.0155 (17) 0.0246 (18)
C11 0.042 (2) 0.077 (3) 0.073 (3) 0.0102 (19) 0.028 (2) 0.039 (2)
C12 0.052 (2) 0.062 (2) 0.059 (2) 0.0154 (19) 0.0278 (19) 0.0336 (19)
C13 0.0411 (19) 0.046 (2) 0.0342 (16) 0.0104 (16) 0.0113 (15) 0.0130 (15)
C14 0.0329 (17) 0.0427 (19) 0.0374 (17) 0.0066 (14) 0.0135 (14) 0.0118 (14)
C15 0.052 (3) 0.115 (4) 0.056 (2) 0.010 (3) 0.005 (2) 0.034 (3)

Geometric parameters (Å, °)

Br1—C3 1.886 (3) C4—H4 0.9300
Br2—C5 1.889 (3) C5—C6 1.378 (4)
Br3—C13 1.891 (3) C6—H6 0.9300
O1—C2 1.339 (4) C7—H7 0.9300
O1—H1 0.8200 C8—C9 1.494 (4)
O2—C8 1.221 (4) C9—C14 1.381 (4)
O3—C15 1.400 (4) C9—C10 1.381 (5)
O3—H3 0.8200 C10—C11 1.385 (5)
N1—C7 1.265 (4) C10—H10 0.9300
N1—N2 1.367 (3) C11—C12 1.378 (5)
N2—C8 1.361 (4) C11—H11 0.9300
N2—H2 0.90 (3) C12—C13 1.364 (5)
C1—C6 1.388 (5) C12—H12 0.9300
C1—C2 1.399 (4) C13—C14 1.378 (4)
C1—C7 1.461 (4) C14—H14 0.9300
C2—C3 1.390 (4) C15—H15A 0.9600
C3—C4 1.365 (5) C15—H15B 0.9600
C4—C5 1.370 (5) C15—H15C 0.9600
C2—O1—H1 109.5 O2—C8—N2 121.2 (3)
C15—O3—H3 109.5 O2—C8—C9 121.5 (3)
C7—N1—N2 120.2 (3) N2—C8—C9 117.2 (3)
C8—N2—N1 115.8 (3) C14—C9—C10 120.4 (3)
C8—N2—H2 125 (3) C14—C9—C8 123.2 (3)
N1—N2—H2 118 (3) C10—C9—C8 116.4 (3)
C6—C1—C2 120.0 (3) C9—C10—C11 119.6 (3)
C6—C1—C7 119.1 (3) C9—C10—H10 120.2
C2—C1—C7 120.8 (3) C11—C10—H10 120.2
O1—C2—C3 118.5 (3) C12—C11—C10 120.3 (3)
O1—C2—C1 123.4 (3) C12—C11—H11 119.8
C3—C2—C1 118.1 (3) C10—C11—H11 119.8
C4—C3—C2 121.7 (3) C13—C12—C11 119.0 (3)
C4—C3—Br1 119.5 (2) C13—C12—H12 120.5
C2—C3—Br1 118.8 (3) C11—C12—H12 120.5
C3—C4—C5 119.5 (3) C12—C13—C14 122.0 (3)
C3—C4—H4 120.2 C12—C13—Br3 119.2 (3)
C5—C4—H4 120.2 C14—C13—Br3 118.8 (2)
C4—C5—C6 120.8 (3) C13—C14—C9 118.6 (3)
C4—C5—Br2 119.4 (3) C13—C14—H14 120.7
C6—C5—Br2 119.8 (3) C9—C14—H14 120.7
C5—C6—C1 119.7 (3) O3—C15—H15A 109.5
C5—C6—H6 120.2 O3—C15—H15B 109.5
C1—C6—H6 120.2 H15A—C15—H15B 109.5
N1—C7—C1 118.6 (3) O3—C15—H15C 109.5
N1—C7—H7 120.7 H15A—C15—H15C 109.5
C1—C7—H7 120.7 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.84 2.559 (3) 145
O3—H3···O2i 0.82 1.97 2.767 (4) 164
N2—H2···O3ii 0.90 (3) 1.99 (2) 2.848 (4) 160 (4)

Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2587).

References

  1. Annigeri, S. M., Naik, A. D., Gangadharmath, U. B., Revankar, V. K. & Mahale, V. B. (2002). Transition Met. Chem.27, 316–320.
  2. Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682. [DOI] [PMC free article] [PubMed]
  3. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Lodeiro, C., Bastida, R., Bértolo, E., Macías, A. & Rodríguez, A. (2003). Transition Met. Chem.28, 388–394.
  5. Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
  6. Rao, P. V., Rao, C. P., Wegelius, E. K. & Rissanen, K. (2003). J. Chem. Crystallogr.33, 139–147.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem.25, 1179–1182.
  10. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem.33, 543–546.
  11. Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.
  12. Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452. [DOI] [PMC free article] [PubMed]
  13. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007466/sj2587sup1.cif

e-65-0o688-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007466/sj2587Isup2.hkl

e-65-0o688-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES