Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o701–o702. doi: 10.1107/S160053680900751X

A redetermination of 2-(6-diethyl­amino-3-diethyl­iminio-3H-xanthen-9-yl)benzoate–ethyl gallate (1/1) at room temperature

Jin Mizuguchi a,*, Kazuyuki Sato a
PMCID: PMC2968829  PMID: 21582440

Abstract

The title compound, C28H30N2O3·C9H10O5, is a well known red leuco complex of 2-(6-diethyl­amino-3-diethyl­iminio-3H-xanthene-9-yl)benzoate (rhodamine B base abbreviated to RBB: leuco dye) with ethyl gallate (EG: developer). The structure of the complex at room temperature has recently been reported by Sekiguchi, Takayama, Gotanda & Sano [(2007) Chem. Lett. 36, 1010–1011]. The RBB–EG complex forms a dimer (RBB⋯EG⋯EG⋯RBB) through inter­molecular O—H⋯O hydrogen bonds. In a subsequent re-examination of the structure at room temperature, we found the RBB mol­ecule to be disordered with a methyl group of one ethyl substituent of a diethyl­amino group at one extremity of the xanthene unit disordered over two positions [occupancies: 0.735 (5)/0.265 (5)]. Furthermore, at the other end of the xanthene residue, the entire diethyl­amino substituent (i.e. the N atom and the associated C and H atoms) was also disordered over two sites with occupancies 0.653 (7)/0.347 (7). This leads to four kinds of RBB conformations, which, in turn, results in the formation of 16 discrete RBB⋯EG⋯EG⋯RBB dimers in the crystal.

Related literature

For the previous determination of the structure of the 1:1 RBB/EG complex at room temperature, see: Sekiguchi et al. (2007) and for the structure of a second triclinic form of the same complex at 93 K, see: Mizuguchi (2008). For the related structure of n-propyl gallate, see: Iwata et al. (2005); Hitachi et al. (2005).graphic file with name e-65-0o701-scheme1.jpg

Experimental

Crystal data

  • C28H30N2O3·C9H10O5

  • M r = 640.71

  • Triclinic, Inline graphic

  • a = 11.4721 (3) Å

  • b = 11.8036 (3) Å

  • c = 12.4816 (3) Å

  • α = 85.805 (2)°

  • β = 87.202 (1)°

  • γ = 81.973 (1)°

  • V = 1667.84 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 1995) T min = 0.851, T max = 0.863

  • 15046 measured reflections

  • 5610 independent reflections

  • 3355 reflections with F 2 > 2σ(F 2)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.141

  • S = 0.93

  • 5610 reflections

  • 476 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900751X/sj2586sup1.cif

e-65-0o701-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900751X/sj2586Isup2.hkl

e-65-0o701-Isup2.hkl (274.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O7i 0.82 2.00 2.811 (2) 168
O5—H5O⋯O2 0.82 2.79 3.257 (2) 118
O5—H5O⋯O3 0.82 1.78 2.579 (2) 164
O6—H6O⋯O2 0.82 1.86 2.5991 (18) 148
O6—H6O⋯O3 0.82 2.78 3.3842 (19) 132
O6—H6O⋯O5 0.82 2.47 2.8758 (19) 112

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their sincere thanks to Mr H. Shima for experimental assistance.

supplementary crystallographic information

Comment

The title compound, C28H30N2O3.C9H10O5, is a well known red leuco complex of 2-(6-diethylamino-3-diethyliminio-3H-xanthene-9-yl)benzoate with ethyl gallate (rhodamine B base abbreviated to RBB: leuco dye) with ethyl gallate (EG: developer). The structure of the RBB/EG complex at room temperature has recently been reported by Sekiguchi et al. (2007), where the RBB conformation is uniquely RBB-A as shown schematically in Fig. 1a. That is, the ethyl groups of the xanthene diethylamino substituents lie on the same side of the xanthene plane in RBB-A. Quite recently, we have also found a new triclinic phase with two discrete base/developer complexes (RBB-A/EG-A and RBB-B/EG-B: see Fig. 1a) at 93 K (Mizuguchi, 2008). In both phases, two RBBs are connected by a sub-dimer of EG through intermolecular O—H···O hydrogen bonds. However, close inspection of the supplementary CIF of the report of Sekiguchi et al. (2007) revealed that there was a residual electron density peak of about 1.35 e Å-3. For this reason, a redetermination of the structure has been carried out at room temperature in the present investigation. This revealed that the RBB molecule is disordered as shown in Fig. 1b with the C28 methyl group of one ethyl substituent of the N1 diethylamino group at one extremity of the xanthene moiety as well as the entire diethylamino-substituent (i.e. N2 atom with the associated C and H atoms) at the other end of the xanthene unit disordered over two positions.

As shown in Fig. 1b, the RBB molecule is disordered at C28A/C28B together with their associated H atoms at one extremity of the xanthene moiety. The disordered structure is separated into the major (0.735 (5)) and minor (0.265 (5)) components which correspond to the RBB-A and RBB-B forms respectively, as shown in Fig. 1a. These are similar to those found at 93K, where the diethylamino-substituents lie either on the same side, or on opposite sides of the xanthene plane. Similarly, the disorder at the entire N2 diethylamino-substituents at the other end of the xanthene plane also leads to the presence of the two conformations described above: N2A group (diethylamino-substituents on the same side; occupancy 0.653 (7)) and N2B group (on opposite sides; occupancy 0.347 (7)). Figs. 2–5 show plots of the four possible structures of (I). Of these, the previous report (Sekiguchi et al., 2007) only identified the conformation shown in Fig. 2.

The lactone ring is opened to form a zwitterionic structure and the benzene ring with the carboxylate is twisted to be nearly perpendicular to the xanthene plane with a dihedral angle of 98.9 (1)° between the O1/C1—C13 plane of the xanthene and the C14—C19 plane of the benzene ring. The xanthene moiety is nearly flat (mean deviation from the least-squares plane, 0.0300 Å).

There are intra and intermolecular O—H···O hydrogen bonds leading to the formation of the RBB/EG complexes as shown in Fig. 6. For example, two major RBB/EG complexes are further connected by intermolecular O—H···O hydrogen bonds between two EGs to form a dimer as shown in Fig. 7. The existence of the four possible RBB conformations leads to the formation of 16 kinds of RBB···EG···EG···RBB dimers in the crystal. The formation of the EG dimer is similar to that found in n-propyl gallate (Iwata et al., 2005; Hitachi et al., 2005).

Experimental

Rhodamine B base and 4-hydroxybenzophenone were purchased from Sigma-Aldrich Corp. and Wako Pure Chemical Industries, Ltd., respectively. Single crystals of (I) were grown by recrystallization from a toluene solution which includes an equimolar quantity of both chemicals. After 24 h, a number of red crystals were obtained in the form of blocks.

Refinement

The C28A and C28B methyl groups were disordered over two positions with occupancies of 0.735 (5)/0.265 (5), respectively. Also the disorder at N2 (i.e. N2A/N2B) extends to C23–C22–N2–C23–C24 and the associated H atoms. The occupancies for the N2A and N2B groups and their associated atoms are 0.653 (7) and 0.347 (7), respectively. All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H = 0.93, 0.96, and 0.97 Å, and Uiso(H) = 1.2 and 1.5 Ueq(C), respectively, and with O—H = 0.82 Å and Uiso(H) = 1.2.

Figures

Fig. 1.

Fig. 1.

(a) A schematic representation of the two independent conformations of RBB found at 93 K, where RBB-A illustrates the diethylamino substituents on the same side while in RBB-B they are on opposite sides, of the xanthene plane. (b) The disordered structure of the title molecule at room temperature, where the major and minor disorder components are depicted as solid and dotted lines, respectively.

Fig. 2.

Fig. 2.

Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity. The "major/major" combination shown here corresponds to the RBB-A form found at 93K and shown in Fig. 1a.

Fig. 3.

Fig. 3.

Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity.

Fig. 4.

Fig. 4.

Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity.

Fig. 5.

Fig. 5.

Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity. The "minor/minor" combination shown here corresponds to the RBB-B form found at 93K and shown in Fig. 1a.

Fig. 6.

Fig. 6.

Intra- and intermolecular O—H···O hydrogen bonds leading to the formation of the RBB/EG complex. For clarity, only the C14/C19 benzene ring and its substituents are shown for the RBB unit.

Fig. 7.

Fig. 7.

The hydrogen-bonded RBB (major)···EG···EG···RBB (major) dimer formed by linking two RBB/EG complexes through intermolecular O—H···O hydrogen bonds.

Crystal data

C28H30N2O3·C9H10O5 Z = 2
Mr = 640.71 F(000) = 680.00
Triclinic, P1 Dx = 1.276 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54187 Å
a = 11.4721 (3) Å Cell parameters from 10532 reflections
b = 11.8036 (3) Å θ = 3.0–68.5°
c = 12.4816 (3) Å µ = 0.74 mm1
α = 85.805 (2)° T = 296 K
β = 87.202 (1)° Block, red
γ = 81.973 (1)° 0.20 × 0.20 × 0.20 mm
V = 1667.84 (7) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 3355 reflections with F2 > 2σ(F2)
ω scans Rint = 0.077
Absorption correction: multi-scan (Higashi, 1995) θmax = 68.2°
Tmin = 0.851, Tmax = 0.863 h = −13→13
15046 measured reflections k = −13→14
5610 independent reflections l = −14→15

Refinement

Refinement on F2 31 restraints
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0812P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
5610 reflections Δρmax = 0.16 e Å3
476 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.62196 (11) 0.41220 (11) 0.45212 (10) 0.0516 (3)
O2 0.57084 (12) 0.69798 (13) 0.66780 (12) 0.0664 (4)
O3 0.60107 (12) 0.76396 (14) 0.82411 (12) 0.0728 (5)
O4 0.21545 (15) 0.78684 (15) 1.01780 (12) 0.0889 (6)
H4O 0.1650 0.8183 1.0587 0.107*
O5 0.38741 (12) 0.72981 (13) 0.87434 (12) 0.0768 (5)
H5O 0.4509 0.7531 0.8609 0.092*
O6 0.37281 (12) 0.83482 (12) 0.65926 (11) 0.0693 (5)
H6O 0.4205 0.7806 0.6808 0.083*
O7 −0.06957 (15) 1.09897 (17) 0.82505 (14) 0.1034 (7)
O8 0.01167 (13) 1.10673 (14) 0.66131 (13) 0.0808 (5)
N1 0.54396 (19) 0.14504 (17) 0.73818 (16) 0.0812 (6)
C1 0.58390 (19) 0.24391 (19) 0.70248 (18) 0.0604 (6)
C2 0.63447 (19) 0.30991 (18) 0.77375 (17) 0.0611 (6)
H2 0.6350 0.2872 0.8467 0.073*
C3 0.68183 (18) 0.40497 (18) 0.73815 (16) 0.0553 (5)
H3 0.7149 0.4456 0.7872 0.066*
C4 0.68265 (16) 0.44474 (16) 0.62802 (15) 0.0462 (5)
C5 0.62725 (16) 0.38095 (16) 0.55992 (15) 0.0463 (5)
C6 0.58048 (17) 0.28344 (18) 0.59322 (17) 0.0556 (5)
H6 0.5466 0.2435 0.5442 0.067*
C7 0.67239 (16) 0.50429 (16) 0.40937 (16) 0.0468 (5)
C8 0.66879 (18) 0.52327 (18) 0.29939 (16) 0.0559 (5)
H8 0.6337 0.4751 0.2590 0.067*
C9 0.7186 (2) 0.6162 (2) 0.24908 (18) 0.0715 (7)
C10 0.7693 (2) 0.6883 (2) 0.31501 (18) 0.0724 (7)
H10 0.7999 0.7523 0.2835 0.087*
C11 0.77389 (19) 0.66561 (19) 0.42244 (17) 0.0598 (6)
H11 0.8080 0.7143 0.4630 0.072*
C12 0.72836 (16) 0.57016 (16) 0.47512 (15) 0.0459 (5)
C13 0.73447 (15) 0.53923 (16) 0.58585 (15) 0.0442 (5)
C14 0.81034 (16) 0.59702 (16) 0.65346 (15) 0.0470 (5)
C15 0.93057 (18) 0.5612 (2) 0.64624 (18) 0.0638 (6)
H15 0.9598 0.5038 0.6009 0.077*
C16 1.0074 (2) 0.6089 (2) 0.7050 (2) 0.0762 (7)
H16 1.0877 0.5830 0.7000 0.091*
C17 0.9652 (2) 0.6951 (2) 0.7711 (2) 0.0738 (7)
H17 1.0170 0.7301 0.8085 0.089*
C18 0.84517 (19) 0.72899 (19) 0.78127 (18) 0.0610 (6)
H18 0.8165 0.7854 0.8278 0.073*
C19 0.76644 (16) 0.68071 (16) 0.72356 (15) 0.0456 (5)
C20 0.63599 (17) 0.71751 (16) 0.73885 (17) 0.0507 (5)
N2A 0.7055 (4) 0.6508 (4) 0.1419 (3) 0.0667 (12) 0.653 (7)
C21A 0.6481 (6) 0.5815 (5) 0.0733 (4) 0.0907 (19) 0.653 (7)
H21A 0.6120 0.6300 0.0144 0.109* 0.653 (7)
H21B 0.5865 0.5474 0.1147 0.109* 0.653 (7)
C22A 0.7368 (7) 0.4881 (7) 0.0290 (6) 0.121 (3) 0.653 (7)
H22A 0.6985 0.4446 −0.0173 0.181* 0.653 (7)
H22B 0.7701 0.4383 0.0872 0.181* 0.653 (7)
H22C 0.7982 0.5218 −0.0112 0.181* 0.653 (7)
C23A 0.7631 (5) 0.7444 (5) 0.0886 (5) 0.0845 (18) 0.653 (7)
H23A 0.7451 0.8113 0.1302 0.101* 0.653 (7)
H23B 0.7306 0.7641 0.0183 0.101* 0.653 (7)
C24A 0.8941 (6) 0.7159 (9) 0.0753 (6) 0.119 (3) 0.653 (7)
H24A 0.9263 0.7806 0.0405 0.179* 0.653 (7)
H24B 0.9128 0.6512 0.0322 0.179* 0.653 (7)
H24C 0.9273 0.6976 0.1446 0.179* 0.653 (7)
N2B 0.7578 (9) 0.6057 (7) 0.1399 (5) 0.067 (2) 0.347 (7)
C21B 0.7208 (8) 0.5243 (11) 0.0689 (8) 0.070 (3) 0.347 (7)
H21C 0.7341 0.4489 0.1063 0.084* 0.347 (7)
H21D 0.7742 0.5225 0.0062 0.084* 0.347 (7)
C22B 0.5970 (7) 0.5395 (8) 0.0285 (7) 0.083 (3) 0.347 (7)
H22D 0.5889 0.4783 −0.0160 0.124* 0.347 (7)
H22E 0.5821 0.6116 −0.0127 0.124* 0.347 (7)
H22F 0.5415 0.5383 0.0885 0.124* 0.347 (7)
C23B 0.8235 (11) 0.6926 (10) 0.0826 (10) 0.097 (4) 0.347 (7)
H23C 0.8078 0.7636 0.1186 0.116* 0.347 (7)
H23D 0.7968 0.7078 0.0097 0.116* 0.347 (7)
C24B 0.9536 (10) 0.6518 (13) 0.0797 (12) 0.119 (3) 0.347 (7)
H24D 0.9947 0.7101 0.0439 0.179* 0.347 (7)
H24E 0.9695 0.5832 0.0416 0.179* 0.347 (7)
H24F 0.9798 0.6360 0.1518 0.179* 0.347 (7)
C25 0.5100 (3) 0.0666 (2) 0.6627 (3) 0.0976 (9)
H25A 0.4601 0.1105 0.6096 0.117*
H25B 0.4642 0.0128 0.7018 0.117*
C26 0.6126 (3) 0.0012 (2) 0.6064 (2) 0.1088 (10)
H26A 0.5863 −0.0588 0.5697 0.163*
H26B 0.6693 −0.0318 0.6579 0.163*
H26C 0.6482 0.0519 0.5552 0.163*
C27 0.5405 (3) 0.1044 (3) 0.8530 (2) 0.1106 (11)
H27A 0.5321 0.1708 0.8956 0.133* 0.735 (5)
H27B 0.4704 0.0674 0.8674 0.133* 0.735 (5)
H27C 0.5688 0.0229 0.8592 0.133* 0.265 (5)
H27D 0.5939 0.1429 0.8907 0.133* 0.265 (5)
C28A 0.6391 (4) 0.0270 (3) 0.8895 (4) 0.1142 (17) 0.735 (5)
H28A 0.6298 0.0102 0.9656 0.171* 0.735 (5)
H28B 0.7098 0.0612 0.8741 0.171* 0.735 (5)
H28C 0.6443 −0.0427 0.8533 0.171* 0.735 (5)
C28B 0.4273 (9) 0.1232 (10) 0.9041 (10) 0.122 (4) 0.265 (5)
H28D 0.4288 0.0834 0.9740 0.183* 0.265 (5)
H28E 0.3713 0.0951 0.8616 0.183* 0.265 (5)
H28F 0.4050 0.2038 0.9113 0.183* 0.265 (5)
C29 0.11073 (17) 0.97922 (17) 0.78864 (17) 0.0535 (5)
C30 0.11491 (18) 0.92607 (19) 0.89144 (17) 0.0615 (6)
H30 0.0550 0.9460 0.9423 0.074*
C31 0.20825 (19) 0.84344 (19) 0.91795 (17) 0.0594 (6)
C32 0.29921 (17) 0.81247 (17) 0.84399 (17) 0.0535 (5)
C33 0.29226 (16) 0.86332 (17) 0.73917 (16) 0.0507 (5)
C34 0.19940 (16) 0.94763 (17) 0.71342 (16) 0.0533 (5)
H34 0.1967 0.9834 0.6445 0.064*
C35 0.00929 (19) 1.0669 (2) 0.76249 (19) 0.0658 (6)
C36 −0.0881 (2) 1.1878 (3) 0.6247 (2) 0.1044 (10)
H36A −0.1612 1.1623 0.6524 0.125*
H36B −0.0840 1.2626 0.6506 0.125*
C37 −0.0845 (3) 1.1951 (3) 0.5094 (3) 0.1308 (13)
H37A −0.1495 1.2489 0.4839 0.196*
H37B −0.0898 1.1210 0.4844 0.196*
H37C −0.0119 1.2202 0.4826 0.196*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0572 (8) 0.0526 (8) 0.0461 (8) −0.0103 (6) −0.0067 (6) −0.0016 (6)
O2 0.0483 (8) 0.0812 (11) 0.0693 (10) 0.0075 (7) −0.0122 (7) −0.0277 (8)
O3 0.0586 (9) 0.0995 (12) 0.0594 (10) 0.0023 (8) 0.0045 (7) −0.0285 (9)
O4 0.0873 (11) 0.1121 (14) 0.0514 (10) 0.0240 (10) 0.0129 (8) 0.0185 (9)
O5 0.0579 (9) 0.0789 (11) 0.0819 (12) 0.0115 (8) 0.0084 (8) 0.0248 (9)
O6 0.0639 (9) 0.0755 (10) 0.0580 (9) 0.0156 (8) 0.0159 (7) 0.0057 (8)
O7 0.0816 (12) 0.1408 (17) 0.0679 (12) 0.0465 (11) 0.0147 (10) −0.0040 (11)
O8 0.0677 (10) 0.0974 (12) 0.0635 (10) 0.0285 (9) 0.0027 (8) 0.0085 (9)
N1 0.1076 (16) 0.0714 (13) 0.0693 (14) −0.0378 (12) −0.0053 (12) 0.0142 (11)
C1 0.0624 (13) 0.0581 (14) 0.0593 (14) −0.0089 (11) 0.0006 (11) 0.0053 (11)
C2 0.0745 (14) 0.0618 (14) 0.0446 (13) −0.0062 (11) −0.0027 (11) 0.0065 (11)
C3 0.0637 (13) 0.0564 (13) 0.0442 (12) −0.0016 (10) −0.0041 (10) −0.0028 (10)
C4 0.0453 (10) 0.0487 (11) 0.0422 (11) 0.0017 (9) −0.0034 (9) −0.0007 (9)
C5 0.0455 (10) 0.0500 (12) 0.0407 (11) 0.0009 (9) −0.0009 (8) 0.0000 (9)
C6 0.0595 (12) 0.0565 (13) 0.0514 (13) −0.0103 (10) −0.0053 (10) −0.0006 (10)
C7 0.0456 (11) 0.0470 (11) 0.0462 (12) −0.0011 (9) −0.0038 (9) −0.0017 (9)
C8 0.0634 (13) 0.0644 (14) 0.0414 (12) −0.0134 (11) −0.0086 (10) −0.0015 (10)
C9 0.0893 (17) 0.0864 (17) 0.0431 (13) −0.0308 (14) −0.0096 (12) 0.0078 (12)
C10 0.0964 (18) 0.0740 (16) 0.0514 (14) −0.0331 (14) −0.0072 (13) 0.0085 (12)
C11 0.0689 (14) 0.0618 (14) 0.0512 (13) −0.0166 (11) −0.0084 (11) −0.0010 (11)
C12 0.0472 (10) 0.0467 (11) 0.0435 (11) −0.0035 (9) −0.0044 (9) −0.0046 (9)
C13 0.0432 (10) 0.0481 (11) 0.0386 (10) 0.0042 (8) −0.0018 (8) −0.0055 (9)
C14 0.0451 (11) 0.0527 (12) 0.0423 (11) −0.0038 (9) −0.0050 (9) 0.0002 (9)
C15 0.0498 (12) 0.0821 (16) 0.0573 (14) 0.0034 (11) −0.0027 (10) −0.0132 (12)
C16 0.0457 (12) 0.111 (2) 0.0716 (17) −0.0057 (13) −0.0079 (12) −0.0113 (16)
C17 0.0582 (14) 0.103 (2) 0.0649 (15) −0.0214 (13) −0.0135 (12) −0.0110 (15)
C18 0.0638 (14) 0.0689 (14) 0.0523 (13) −0.0112 (11) −0.0035 (11) −0.0126 (11)
C19 0.0480 (11) 0.0495 (11) 0.0393 (10) −0.0065 (9) −0.0025 (9) −0.0030 (9)
C20 0.0513 (12) 0.0477 (12) 0.0514 (12) −0.0010 (9) 0.0001 (10) −0.0042 (10)
N2A 0.087 (3) 0.074 (3) 0.0399 (19) −0.015 (2) −0.0150 (19) 0.0078 (18)
C21A 0.116 (5) 0.106 (4) 0.050 (3) −0.020 (4) −0.006 (3) 0.008 (3)
C22A 0.168 (6) 0.107 (6) 0.094 (6) −0.040 (4) 0.016 (5) −0.021 (4)
C23A 0.114 (4) 0.085 (4) 0.056 (3) −0.028 (3) −0.007 (3) 0.016 (3)
C24A 0.120 (7) 0.146 (9) 0.101 (3) −0.052 (5) 0.003 (5) −0.004 (5)
N2B 0.090 (6) 0.066 (5) 0.046 (4) −0.022 (4) −0.014 (4) 0.015 (4)
C21B 0.085 (7) 0.087 (10) 0.043 (6) −0.032 (6) 0.006 (5) −0.014 (5)
C22B 0.101 (6) 0.084 (6) 0.066 (5) −0.021 (5) −0.039 (5) 0.008 (4)
C23B 0.158 (16) 0.084 (8) 0.053 (5) −0.037 (9) −0.018 (9) 0.012 (6)
C24B 0.120 (7) 0.146 (9) 0.101 (3) −0.052 (5) 0.003 (5) −0.004 (5)
C25 0.124 (2) 0.0791 (19) 0.098 (2) −0.0515 (19) −0.0053 (19) 0.0119 (17)
C26 0.159 (3) 0.077 (2) 0.092 (2) −0.027 (2) −0.011 (2) 0.0052 (17)
C27 0.143 (3) 0.094 (2) 0.099 (2) −0.049 (2) −0.018 (2) 0.0329 (18)
C28A 0.146 (4) 0.089 (3) 0.110 (3) −0.024 (3) −0.024 (3) 0.005 (2)
C28B 0.161 (8) 0.109 (7) 0.098 (7) −0.044 (7) 0.026 (6) 0.013 (6)
C29 0.0500 (11) 0.0600 (13) 0.0489 (12) 0.0002 (10) 0.0000 (9) −0.0086 (10)
C30 0.0558 (12) 0.0769 (15) 0.0477 (12) 0.0038 (11) 0.0059 (10) −0.0054 (11)
C31 0.0634 (13) 0.0677 (14) 0.0435 (12) −0.0005 (11) 0.0020 (10) 0.0022 (11)
C32 0.0482 (11) 0.0532 (12) 0.0563 (13) −0.0010 (9) 0.0014 (10) 0.0023 (10)
C33 0.0462 (11) 0.0538 (12) 0.0503 (12) −0.0046 (9) 0.0071 (9) −0.0020 (10)
C34 0.0518 (11) 0.0583 (13) 0.0468 (12) 0.0007 (10) 0.0009 (9) −0.0010 (10)
C35 0.0577 (13) 0.0800 (16) 0.0551 (14) 0.0073 (12) 0.0006 (11) −0.0075 (12)
C36 0.0872 (19) 0.120 (2) 0.088 (2) 0.0448 (17) −0.0106 (16) 0.0104 (18)
C37 0.108 (2) 0.176 (3) 0.091 (2) 0.039 (2) −0.019 (2) 0.011 (2)

Geometric parameters (Å, °)

O1—C7 1.364 (2) C22A—H22B 0.9600
O1—C5 1.371 (2) C22A—H22C 0.9600
O2—C20 1.241 (2) C23A—C24A 1.498 (6)
O3—C20 1.255 (2) C23A—H23A 0.9700
O4—C31 1.371 (2) C23A—H23B 0.9700
O4—H4O 0.8200 C24A—H24A 0.9600
O5—C32 1.352 (2) C24A—H24B 0.9600
O5—H5O 0.8200 C24A—H24C 0.9600
O6—C33 1.354 (2) N2B—C21B 1.471 (7)
O6—H6O 0.8200 N2B—C23B 1.478 (7)
O7—C35 1.204 (2) C21B—C22B 1.513 (8)
O8—C35 1.315 (3) C21B—H21C 0.9700
O8—C36 1.455 (3) C21B—H21D 0.9700
N1—C1 1.350 (3) C22B—H22D 0.9600
N1—C25 1.470 (3) C22B—H22E 0.9600
N1—C27 1.479 (3) C22B—H22F 0.9600
C1—C6 1.409 (3) C23B—C24B 1.503 (9)
C1—C2 1.419 (3) C23B—H23C 0.9700
C2—C3 1.351 (3) C23B—H23D 0.9700
C2—H2 0.9300 C24B—H24D 0.9600
C3—C4 1.420 (3) C24B—H24E 0.9600
C3—H3 0.9300 C24B—H24F 0.9600
C4—C13 1.394 (3) C25—C26 1.490 (4)
C4—C5 1.405 (3) C25—H25A 0.9700
C5—C6 1.366 (3) C25—H25B 0.9700
C6—H6 0.9300 C26—H26A 0.9600
C7—C8 1.376 (3) C26—H26B 0.9600
C7—C12 1.405 (3) C26—H26C 0.9600
C8—C9 1.401 (3) C27—C28B 1.415 (8)
C8—H8 0.9300 C27—C28A 1.422 (4)
C9—N2A 1.379 (4) C27—H27A 0.9700
C9—N2B 1.423 (6) C27—H27B 0.9700
C9—C10 1.424 (3) C27—H27C 0.9700
C10—C11 1.350 (3) C27—H27D 0.9700
C10—H10 0.9300 C28A—H28A 0.9600
C11—C12 1.413 (3) C28A—H28B 0.9600
C11—H11 0.9300 C28A—H28C 0.9600
C12—C13 1.406 (3) C28B—H28D 0.9600
C13—C14 1.502 (3) C28B—H28E 0.9600
C14—C15 1.386 (3) C28B—H28F 0.9600
C14—C19 1.393 (3) C29—C34 1.381 (3)
C15—C16 1.376 (3) C29—C30 1.386 (3)
C15—H15 0.9300 C29—C35 1.477 (3)
C16—C17 1.377 (3) C30—C31 1.380 (3)
C16—H16 0.9300 C30—H30 0.9300
C17—C18 1.382 (3) C31—C32 1.387 (3)
C17—H17 0.9300 C32—C33 1.400 (3)
C18—C19 1.388 (3) C33—C34 1.385 (3)
C18—H18 0.9300 C34—H34 0.9300
C19—C20 1.506 (3) C36—C37 1.435 (4)
N2A—C21A 1.465 (5) C36—H36A 0.9700
N2A—C23A 1.467 (5) C36—H36B 0.9700
C21A—C22A 1.509 (6) C37—H37A 0.9600
C21A—H21A 0.9700 C37—H37B 0.9600
C21A—H21B 0.9700 C37—H37C 0.9600
C22A—H22A 0.9600
O2···O6 2.5991 (18) N2A···C28Bii 2.914 (11)
O3···O5 2.579 (2) C22B···C22Biii 2.676 (12)
O4···O7i 2.811 (2) C23A···C28Bii 2.504 (11)
O5···O3 2.579 (2) C28B···N2Aii 2.914 (11)
O6···O2 2.5991 (18) C28B···C23Aii 2.504 (11)
O7···O4i 2.811 (2)
C7—O1—C5 120.40 (16) N2B—C21B—C22B 121.2 (12)
C31—O4—H4O 109.5 N2B—C21B—H21C 107.0
C32—O5—H5O 109.5 C22B—C21B—H21C 107.0
C33—O6—H6O 109.5 N2B—C21B—H21D 107.0
C35—O8—C36 117.74 (19) C22B—C21B—H21D 107.0
C1—N1—C25 121.1 (2) H21C—C21B—H21D 106.8
C1—N1—C27 122.9 (2) C21B—C22B—H22D 109.5
C25—N1—C27 115.9 (2) C21B—C22B—H22E 109.5
N1—C1—C6 121.6 (2) H22D—C22B—H22E 109.5
N1—C1—C2 120.8 (2) C21B—C22B—H22F 109.5
C6—C1—C2 117.6 (2) H22D—C22B—H22F 109.5
C3—C2—C1 121.5 (2) H22E—C22B—H22F 109.5
C3—C2—H2 119.2 N2B—C23B—C24B 110.8 (8)
C1—C2—H2 119.2 N2B—C23B—H23C 109.5
C2—C3—C4 121.9 (2) C24B—C23B—H23C 109.5
C2—C3—H3 119.0 N2B—C23B—H23D 109.5
C4—C3—H3 119.0 C24B—C23B—H23D 109.5
C13—C4—C5 120.04 (17) H23C—C23B—H23D 108.1
C13—C4—C3 124.57 (19) C23B—C24B—H24D 109.5
C5—C4—C3 115.39 (18) C23B—C24B—H24E 109.5
C6—C5—O1 115.64 (18) H24D—C24B—H24E 109.5
C6—C5—C4 123.93 (18) C23B—C24B—H24F 109.5
O1—C5—C4 120.37 (17) H24D—C24B—H24F 109.5
C5—C6—C1 119.5 (2) H24E—C24B—H24F 109.5
C5—C6—H6 120.3 N1—C25—C26 113.4 (2)
C1—C6—H6 120.3 N1—C25—H25A 108.9
O1—C7—C8 115.50 (18) C26—C25—H25A 108.9
O1—C7—C12 120.75 (17) N1—C25—H25B 108.9
C8—C7—C12 123.68 (19) C26—C25—H25B 108.9
C7—C8—C9 119.1 (2) H25A—C25—H25B 107.7
C7—C8—H8 120.4 C25—C26—H26A 109.5
C9—C8—H8 120.4 C25—C26—H26B 109.5
N2A—C9—C8 123.0 (3) H26A—C26—H26B 109.5
C8—C9—N2B 116.2 (3) C25—C26—H26C 109.5
N2A—C9—C10 118.2 (3) H26A—C26—H26C 109.5
C8—C9—C10 118.1 (2) H26B—C26—H26C 109.5
N2B—C9—C10 120.7 (4) C28B—C27—C28A 127.0 (6)
C11—C10—C9 121.2 (2) C28B—C27—N1 114.1 (6)
C11—C10—H10 119.4 C28A—C27—N1 116.6 (3)
C9—C10—H10 119.4 C28B—C27—H27A 68.6
C10—C11—C12 122.0 (2) C28A—C27—H27A 108.1
C10—C11—H11 119.0 N1—C27—H27A 108.1
C12—C11—H11 119.0 C28A—C27—H27B 108.1
C7—C12—C13 119.51 (18) N1—C27—H27B 108.1
C7—C12—C11 115.67 (18) H27A—C27—H27B 107.3
C13—C12—C11 124.82 (19) C28B—C27—H27C 108.7
C4—C13—C12 118.90 (18) N1—C27—H27C 108.7
C4—C13—C14 120.76 (16) H27A—C27—H27C 140.0
C12—C13—C14 119.77 (17) H27B—C27—H27C 74.9
C15—C14—C19 119.29 (19) C28B—C27—H27D 108.7
C15—C14—C13 116.78 (18) C28A—C27—H27D 68.4
C19—C14—C13 123.91 (16) N1—C27—H27D 108.7
C16—C15—C14 121.2 (2) H27B—C27—H27D 139.7
C16—C15—H15 119.4 H27C—C27—H27D 107.6
C14—C15—H15 119.4 C27—C28A—H28A 109.5
C15—C16—C17 119.9 (2) C27—C28A—H28B 109.5
C15—C16—H16 120.1 H28A—C28A—H28B 109.5
C17—C16—H16 120.1 C27—C28A—H28C 109.5
C16—C17—C18 119.3 (2) H28A—C28A—H28C 109.5
C16—C17—H17 120.3 H28B—C28A—H28C 109.5
C18—C17—H17 120.3 C27—C28B—H28D 109.5
C17—C18—C19 121.4 (2) C27—C28B—H28E 109.5
C17—C18—H18 119.3 H28D—C28B—H28E 109.5
C19—C18—H18 119.3 C27—C28B—H28F 109.5
C18—C19—C14 118.84 (18) H28D—C28B—H28F 109.5
C18—C19—C20 119.97 (18) H28E—C28B—H28F 109.5
C14—C19—C20 121.18 (18) C34—C29—C30 119.53 (19)
O2—C20—O3 124.83 (19) C34—C29—C35 122.0 (2)
O2—C20—C19 118.03 (18) C30—C29—C35 118.48 (19)
O3—C20—C19 117.13 (19) C31—C30—C29 119.74 (19)
C9—N2A—C21A 119.5 (4) C31—C30—H30 120.1
C9—N2A—C23A 122.6 (4) C29—C30—H30 120.1
C21A—N2A—C23A 117.2 (4) O4—C31—C30 122.02 (19)
N2A—C21A—C22A 110.3 (7) O4—C31—C32 116.56 (19)
N2A—C21A—H21A 109.6 C30—C31—C32 121.4 (2)
C22A—C21A—H21A 109.6 O5—C32—C31 118.64 (19)
N2A—C21A—H21B 109.6 O5—C32—C33 122.70 (18)
C22A—C21A—H21B 109.6 C31—C32—C33 118.55 (18)
H21A—C21A—H21B 108.1 O6—C33—C34 116.86 (18)
C21A—C22A—H22A 109.5 O6—C33—C32 123.40 (18)
C21A—C22A—H22B 109.5 C34—C33—C32 119.75 (18)
H22A—C22A—H22B 109.5 C29—C34—C33 120.9 (2)
C21A—C22A—H22C 109.5 C29—C34—H34 119.5
H22A—C22A—H22C 109.5 C33—C34—H34 119.5
H22B—C22A—H22C 109.5 O7—C35—O8 122.1 (2)
N2A—C23A—C24A 113.7 (5) O7—C35—C29 124.9 (2)
N2A—C23A—H23A 108.8 O8—C35—C29 112.99 (19)
C24A—C23A—H23A 108.8 C37—C36—O8 108.5 (2)
N2A—C23A—H23B 108.8 C37—C36—H36A 110.0
C24A—C23A—H23B 108.8 O8—C36—H36A 110.0
H23A—C23A—H23B 107.7 C37—C36—H36B 110.0
C23A—C24A—H24A 109.5 O8—C36—H36B 110.0
C23A—C24A—H24B 109.5 H36A—C36—H36B 108.4
H24A—C24A—H24B 109.5 C36—C37—H37A 109.5
C23A—C24A—H24C 109.5 C36—C37—H37B 109.5
H24A—C24A—H24C 109.5 H37A—C37—H37B 109.5
H24B—C24A—H24C 109.5 C36—C37—H37C 109.5
C9—N2B—C21B 124.8 (7) H37A—C37—H37C 109.5
C9—N2B—C23B 120.8 (7) H37B—C37—H37C 109.5
C21B—N2B—C23B 113.6 (8)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O7i 0.82 2.00 2.811 (2) 168
O5—H5O···O2 0.82 2.79 3.257 (2) 118
O5—H5O···O3 0.82 1.78 2.579 (2) 164
O6—H6O···O2 0.82 1.86 2.5991 (18) 148
O6—H6O···O3 0.82 2.78 3.3842 (19) 132
O6—H6O···O5 0.82 2.47 2.8758 (19) 112

Symmetry codes: (i) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2586).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381-388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Hitachi, A., Makino, T., Iwata, S. & Mizuguchi, J. (2005). Acta Cryst. E61, o2590–o2592.
  5. Iwata, S., Hitachi, A., Makino, T. & Mizuguchi, J. (2005). Acta Cryst. E61, o2587–o2589.
  6. Mizuguchi, J. (2008). Acta Cryst. E64, o1238–o1239. [DOI] [PMC free article] [PubMed]
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC & Rigaku (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  9. Sekiguchi, Y., Takayama, S., Gotanda, T. & Sano, K. (2007). Chem. Lett.36, 1010–1011.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900751X/sj2586sup1.cif

e-65-0o701-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900751X/sj2586Isup2.hkl

e-65-0o701-Isup2.hkl (274.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES