Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):o727–o728. doi: 10.1107/S1600536809007594

Nicotinamide–2,2,2-trifluoro­ethanol (2/1)

Julie Bardin a, Alan R Kennedy b, Li Ven Wong a, Blair F Johnston a, Alastair J Florence a,*
PMCID: PMC2968831  PMID: 21582462

Abstract

The nicotinamide (NA) mol­ecules of the title compound, 2C6H6N2O·C2H3F3O, form centrosymmetric R 2 2(8) hydrogen-bonded dimers via N—H⋯O contacts. The asymmetric unit contains two mol­ecules of NA and one trifluoroethanol molecule disordered over two sites of equal occupancy. The packing consists of alternating layers of nicotinamide dimers and disordered 2,2,2-trifluoro­ethanol mol­ecules stacking in the c-axis direction. Intra­molecular C—H⋯O and inter­molecular N—H⋯N, O—H⋯N, C—H⋯N, C—H⋯O and C—H⋯F inter­actions are present.

Related literature

For nicotinamide polymorphs, see: Wright & King (1954); Miwa et al. (1999); Hino et al. (2001). For nicotinamide co-crystals and salts, see: Fleischman et al. (2003); Koman et al. (2003); Athimoolam & Natarajan (2007a ,b ); Berry et al. (2008). For graph-set motifs, see: Etter (1990). For initial identification using multi-sample foil transmission X-ray powder diffraction analysis, see: Florence et al. (2003).graphic file with name e-65-0o727-scheme1.jpg

Experimental

Crystal data

  • 2C6H6N2O·C2H3F3O

  • M r = 344.30

  • Triclinic, Inline graphic

  • a = 5.0472 (3) Å

  • b = 11.2930 (7) Å

  • c = 15.0877 (10) Å

  • α = 107.002 (3)°

  • β = 96.636 (3)°

  • γ = 95.753 (3)°

  • V = 808.70 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 K

  • 0.15 × 0.10 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.903, T max = 0.998

  • 15936 measured reflections

  • 4008 independent reflections

  • 3416 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.114

  • S = 1.04

  • 4008 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007594/fl2234sup1.cif

e-65-0o727-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007594/fl2234Isup2.hkl

e-65-0o727-Isup2.hkl (196.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯N3i 0.897 (16) 2.122 (16) 2.9994 (15) 165.7 (15)
N2—H2N⋯O1ii 0.898 (16) 2.013 (16) 2.9093 (13) 176.8 (14)
N4—H3N⋯O2iii 0.877 (16) 2.047 (16) 2.9139 (13) 170.1 (16)
O3—H3O⋯N1iv 0.84 1.91 2.7511 (15) 178
N4—H4N⋯O1v 0.878 (17) 2.222 (17) 3.0867 (14) 168.4 (15)
C1—H1⋯N3i 0.95 2.51 3.4220 (16) 161
C3—H3⋯O2vi 0.95 2.40 3.0103 (15) 122
C5—H5⋯F3Avii 0.95 2.46 3.408 (7) 177
C7—H7⋯O1v 0.95 2.36 3.2118 (14) 149
C11—H11⋯O3 0.95 2.50 3.2590 (16) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors thank the University of Strathclyde for funding JB, the Basic Technology programme of the UK Research Councils for project funding under the Control and Prediction of the Organic Solid State (www.cposs.org.uk), and the Glasgow Centre for Physical Organic Chemistry for access to single-crystal diffraction facilities.

supplementary crystallographic information

Comment

The crystal structure of nicotinamide (NA) was first reported in 1954 (Wright & King, 1954; Miwa et al., 1999) and a number of polymorphic forms have also been identified (Hino et al., 2001). In recent years NA has also been investigated as a pharmaceutically acceptable co-crystal former to modify the crystal structure and physico-chemical properties of drug compounds including carbamazepine (Fleischman et al., 2003), salicylic acid and both racemic and S(+)-ibuprofen (Berry et al., 2008). Crystal structures of 3,5-dinitrosalicylate (Koman et al., 2003) as well as 2R,3R-tartrate and trifluoroacetate (Athimoolam & Natarajan, 2007a and Athimoolam & Natarajan, 2007b) salts of NA have also been reported.

In the 2,2,2-trifluoroethanol (TFE) hemisolvate reported here, the molecules crystallize in space group P1 with two molecules of NA and one molecule of TFE in the asymetric unit (Fig. 1). Both independent NA molecules form centro-symmetric R22(8) (Etter, 1990) dimer motifs via N—H..O hydrogen bonds (Table 1). The anti-oriented hydrogen atoms on both amide groups form further contacts between adjacent non-symmetry equivalent dimers, either to the aromatic nitrogen, N3 (N2—H1N···N3) or the carbonyl oxygen atom, O1 (N4—H4N···O1).This gives rise to a two-dimensional hydrogen bonded layer of nicotinamide dimers lying parallel to the a-b plane. The remaining aromatic acceptor nitrogen atom, N1, forms an N—H···O hydrogen bond to the solvent molecule producing a structure with alternating layers of NA dimers and TFE that stack in the direction of the c-axis (Fig. 2). The structure is further stabilized by six weak C—H···O and C—H···F interactions (Table 1). The CF3 atoms of the TFE molecule are disordered over two sites with equal occupancies.

Experimental

The novel structure reported here was discovered during a study of solvate formation in organic compounds with a range of fluorinated solvents. A crystalline sample was obtained by isothermal evaporation at 263 K from a saturated TFE solution held on a Reactarray RM2 crystalliser. Identification of the novel phase was initially made using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003) and a suitable single-crystal for structure determination was selected from the sample.

Refinement

The amine H atoms were located in a difference synthesis and were refined isotropically [N—H = 0.877 (16)–0.898 (16) Å]. All other H atoms were positioned geometrically at distances of 0.95, 0.99 and 0.84 Å from the parent atoms for CH, CH2 and OH groups respectively. For these atoms, a riding model was used during the refinement process. The Uiso(H) values were constrained to be 1.2 times Ueq of the carrier C atom or 1.5 times Ueq of the carrier O atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. One of the disordered site for the CF3 atoms has been omitted for clarity.

Fig. 2.

Fig. 2.

Crystal packing of the reported compound viewed down the a axis, showing the two-dimensional hydrogen-bonded network of alternating dimers, separated by layers of solvent molecules. Hydrogen bonds are shown as blue dashed lines.

Crystal data

2(C6H6N2O)·C2H3F3O Z = 2
Mr = 344.30 F(000) = 356
Triclinic, P1 Dx = 1.414 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0472 (3) Å Cell parameters from 8696 reflections
b = 11.2930 (7) Å θ = 2.9–28.2°
c = 15.0877 (10) Å µ = 0.12 mm1
α = 107.002 (3)° T = 123 K
β = 96.636 (3)° Slab, colourless
γ = 95.753 (3)° 0.15 × 0.10 × 0.02 mm
V = 808.70 (9) Å3

Data collection

Bruker APEXII CCD diffractometer 4008 independent reflections
Radiation source: fine-focus sealed tube 3416 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −6→6
Tmin = 0.903, Tmax = 0.998 k = −15→14
15936 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.2237P] where P = (Fo2 + 2Fc2)/3
4008 reflections (Δ/σ)max < 0.001
260 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.87250 (15) 0.11455 (7) 0.45065 (6) 0.0226 (2)
N1 0.05569 (19) −0.02252 (9) 0.23414 (7) 0.0240 (3)
N2 0.7054 (2) −0.09004 (9) 0.40991 (7) 0.0225 (3)
C1 0.2538 (2) −0.04184 (10) 0.29313 (8) 0.0212 (3)
C2 0.4782 (2) 0.04629 (9) 0.33748 (7) 0.0186 (3)
C3 0.4931 (2) 0.16131 (10) 0.32072 (8) 0.0236 (3)
C4 0.2882 (2) 0.18307 (11) 0.26047 (9) 0.0274 (3)
C5 0.0760 (2) 0.08876 (11) 0.21836 (8) 0.0261 (3)
C6 0.7000 (2) 0.02482 (9) 0.40354 (7) 0.0188 (3)
O2 −0.39941 (17) 0.44262 (7) 0.39075 (6) 0.0264 (3)
N3 0.33815 (19) 0.66946 (9) 0.31270 (7) 0.0236 (3)
N4 −0.2073 (2) 0.62420 (9) 0.49873 (7) 0.0236 (3)
C7 0.1753 (2) 0.65082 (10) 0.37294 (8) 0.0219 (3)
C8 −0.0429 (2) 0.55638 (9) 0.34852 (8) 0.0198 (3)
C9 −0.0899 (2) 0.47587 (11) 0.25734 (9) 0.0271 (3)
C10 0.0788 (3) 0.49317 (12) 0.19462 (9) 0.0303 (3)
C11 0.2891 (2) 0.59119 (11) 0.22515 (8) 0.0258 (3)
C12 −0.2296 (2) 0.53745 (10) 0.41530 (8) 0.0205 (3)
F1A 0.5655 (16) 0.6926 (4) −0.0538 (5) 0.0869 (18) 0.500
F1B 0.5243 (12) 0.6494 (4) −0.0430 (5) 0.0706 (13) 0.500
F2A 0.8008 (18) 0.8692 (5) −0.0041 (6) 0.0644 (16) 0.500
F2B 0.7971 (17) 0.8192 (6) −0.0144 (6) 0.0647 (19) 0.500
F3A 0.4000 (15) 0.8549 (5) −0.0620 (5) 0.0653 (16) 0.500
F3B 0.3721 (15) 0.8033 (4) −0.0738 (4) 0.0614 (12) 0.500
O3 0.6456 (2) 0.78427 (9) 0.14649 (7) 0.0424 (3)
C13 0.4745 (3) 0.82394 (14) 0.08562 (9) 0.0345 (4)
C14A 0.5622 (6) 0.8123 (3) −0.0096 (2) 0.0320 (7)* 0.500
C14B 0.5411 (6) 0.7718 (4) −0.0096 (2) 0.0322 (7)* 0.500
H1 0.24020 −0.12000 0.30530 0.0250*
H1N 0.592 (3) −0.1567 (14) 0.3723 (11) 0.028 (4)*
H2N 0.839 (3) −0.0991 (14) 0.4511 (11) 0.030 (4)*
H3 0.64230 0.22440 0.35030 0.0280*
H4 0.29370 0.26120 0.24840 0.0330*
H5 −0.06240 0.10330 0.17610 0.0310*
H3N −0.324 (3) 0.6138 (15) 0.5355 (11) 0.036 (4)*
H4N −0.094 (3) 0.6940 (15) 0.5172 (11) 0.032 (4)*
H7 0.21110 0.70510 0.43570 0.0260*
H9 −0.23630 0.40960 0.23810 0.0320*
H10 0.05080 0.43890 0.13200 0.0360*
H11 0.40360 0.60330 0.18190 0.0310*
H3O 0.77220 0.84210 0.17440 0.0640*
H13A 0.45750 0.91270 0.11620 0.0410*
H13B 0.29360 0.77480 0.07530 0.0410*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0234 (4) 0.0156 (4) 0.0256 (4) −0.0015 (3) −0.0023 (3) 0.0052 (3)
N1 0.0222 (5) 0.0233 (5) 0.0252 (5) 0.0009 (4) 0.0002 (4) 0.0075 (4)
N2 0.0224 (5) 0.0162 (4) 0.0274 (5) −0.0010 (4) −0.0029 (4) 0.0081 (4)
C1 0.0214 (5) 0.0181 (5) 0.0244 (5) 0.0015 (4) 0.0030 (4) 0.0075 (4)
C2 0.0195 (5) 0.0167 (5) 0.0191 (5) 0.0031 (4) 0.0035 (4) 0.0044 (4)
C3 0.0243 (5) 0.0177 (5) 0.0283 (6) 0.0007 (4) 0.0023 (4) 0.0075 (4)
C4 0.0306 (6) 0.0211 (5) 0.0330 (6) 0.0033 (4) 0.0018 (5) 0.0133 (5)
C5 0.0251 (5) 0.0278 (6) 0.0274 (6) 0.0054 (4) 0.0009 (4) 0.0124 (5)
C6 0.0191 (5) 0.0167 (5) 0.0200 (5) 0.0013 (4) 0.0036 (4) 0.0051 (4)
O2 0.0278 (4) 0.0172 (4) 0.0324 (5) −0.0040 (3) 0.0079 (3) 0.0059 (3)
N3 0.0232 (5) 0.0181 (4) 0.0300 (5) 0.0001 (4) 0.0056 (4) 0.0084 (4)
N4 0.0251 (5) 0.0189 (4) 0.0258 (5) −0.0022 (4) 0.0061 (4) 0.0062 (4)
C7 0.0231 (5) 0.0164 (5) 0.0254 (5) 0.0003 (4) 0.0038 (4) 0.0060 (4)
C8 0.0204 (5) 0.0150 (5) 0.0252 (5) 0.0027 (4) 0.0035 (4) 0.0079 (4)
C9 0.0253 (6) 0.0224 (5) 0.0290 (6) −0.0047 (4) 0.0035 (4) 0.0039 (4)
C10 0.0329 (6) 0.0281 (6) 0.0244 (6) −0.0029 (5) 0.0060 (5) 0.0014 (5)
C11 0.0261 (6) 0.0246 (5) 0.0287 (6) 0.0022 (4) 0.0079 (4) 0.0103 (5)
C12 0.0202 (5) 0.0157 (5) 0.0268 (5) 0.0016 (4) 0.0029 (4) 0.0089 (4)
F1A 0.112 (4) 0.063 (3) 0.058 (2) 0.019 (3) 0.003 (2) −0.022 (3)
F1B 0.0614 (18) 0.055 (3) 0.064 (2) 0.0127 (19) −0.0039 (15) −0.026 (2)
F2A 0.0451 (16) 0.110 (4) 0.048 (2) 0.003 (3) 0.0128 (15) 0.040 (3)
F2B 0.0340 (15) 0.116 (5) 0.052 (2) 0.012 (3) 0.0162 (13) 0.034 (3)
F3A 0.054 (2) 0.107 (4) 0.042 (2) 0.018 (3) −0.0097 (16) 0.038 (3)
F3B 0.0508 (17) 0.097 (3) 0.0316 (14) 0.008 (3) −0.0059 (11) 0.018 (2)
O3 0.0431 (6) 0.0369 (5) 0.0434 (6) −0.0155 (4) −0.0138 (4) 0.0212 (4)
C13 0.0278 (6) 0.0432 (7) 0.0291 (6) 0.0010 (5) 0.0013 (5) 0.0083 (5)

Geometric parameters (Å, °)

F1A—C14A 1.324 (7) C2—C3 1.3906 (16)
F1B—C14B 1.316 (7) C2—C6 1.4978 (14)
F2A—C14A 1.289 (9) C3—C4 1.3858 (16)
F2B—C14B 1.366 (9) C4—C5 1.3796 (17)
F3A—C14A 1.296 (8) C1—H1 0.9500
F3B—C14B 1.365 (7) C3—H3 0.9500
O1—C6 1.2446 (13) C4—H4 0.9500
O2—C12 1.2366 (14) C5—H5 0.9500
O3—C13 1.3874 (18) C7—C8 1.3882 (15)
O3—H3O 0.8400 C8—C12 1.5013 (15)
N1—C5 1.3421 (17) C8—C9 1.3876 (17)
N1—C1 1.3383 (15) C9—C10 1.3855 (18)
N2—C6 1.3311 (15) C10—C11 1.3847 (19)
N2—H2N 0.898 (16) C7—H7 0.9500
N2—H1N 0.897 (16) C9—H9 0.9500
N3—C7 1.3401 (15) C10—H10 0.9500
N3—C11 1.3361 (15) C11—H11 0.9500
N4—C12 1.3345 (15) C13—C14B 1.477 (3)
N4—H3N 0.877 (16) C13—C14A 1.525 (3)
N4—H4N 0.878 (17) C13—H13A 0.9900
C1—C2 1.3894 (15) C13—H13B 0.9900
F1A···O3 2.859 (7) C4···O2ii 3.1510 (15)
F1A···C10i 3.342 (7) C5···C3vi 3.5363 (15)
F1A···F2A 2.096 (9) C6···N1ii 3.2396 (14)
F1A···F3A 2.119 (9) C6···C1ii 3.4524 (15)
F1B···F3B 2.118 (8) C7···O2ii 3.3847 (14)
F1B···O3 2.780 (7) C7···C12ii 3.4460 (15)
F2A···F3A 2.080 (12) C7···O1v 3.2118 (14)
F2A···O3 2.869 (8) C9···C11vi 3.5486 (15)
F2B···O3 2.750 (8) C10···F1Ai 3.342 (7)
F2B···F3B 2.196 (11) C11···C9ii 3.5486 (15)
F3A···F1A 2.119 (9) C11···O3 3.2590 (16)
F3A···F2A 2.080 (12) C12···C7vi 3.4460 (15)
F3B···F2B 2.196 (11) C12···C12xii 3.5927 (16)
F3B···F1B 2.118 (8) C12···N3vi 3.2557 (15)
F1A···H10i 2.7300 C12···N4xii 3.3776 (15)
F1B···H10i 2.7800 C13···C1xi 3.4220 (18)
F2A···H3O 2.8200 C13···N1viii 3.4382 (18)
F2B···H13Bii 2.8700 C1···H13Ax 2.9000
F2B···H3O 2.8000 C1···H1N 2.627 (16)
F3A···H5iii 2.4600 C1···H3Oix 2.8000
F3B···H5iii 2.5800 C3···H3Nxii 3.086 (16)
F3B···H9iii 2.8600 C5···H3Oix 2.8900
O1···N2iv 2.9093 (13) C6···H2Niv 2.878 (16)
O1···N4v 3.0867 (14) C7···H4N 2.649 (16)
O1···C7v 3.2118 (14) C7···H1xi 3.0500
O2···C7vi 3.3847 (14) C7···H1Nxi 2.872 (16)
O2···C3vi 3.0103 (15) C12···H3Nvii 2.984 (16)
O2···N4vii 2.9139 (13) H1···N3x 2.5100
O2···C4vi 3.1510 (15) H1···C7x 3.0500
O3···N1viii 2.7511 (15) H1···N2 2.6100
O3···F1A 2.859 (7) H1···H1N 2.0800
O3···F2A 2.869 (8) H1N···N3x 2.122 (16)
O3···C11 3.2590 (16) H1N···C1 2.627 (16)
O3···F2B 2.750 (8) H1N···H1 2.0800
O3···F1B 2.780 (7) H1N···C7x 2.872 (16)
O1···H7v 2.3600 H2N···H2Niv 2.57 (2)
O1···H2Niv 2.013 (16) H2N···O1iv 2.013 (16)
O1···H4Nv 2.222 (17) H2N···C6iv 2.878 (16)
O1···H3 2.4800 H3···O1 2.4800
O2···H3Nvii 2.047 (16) H3···O2ii 2.4000
O2···H4vi 2.6900 H3N···C12vii 2.984 (16)
O2···H3vi 2.4000 H3N···C3xii 3.086 (16)
O2···H9 2.4700 H3N···O2vii 2.047 (16)
O3···H11 2.5000 H3O···C1viii 2.8000
N1···C6vi 3.2396 (14) H3O···C5viii 2.8900
N1···C13ix 3.4382 (18) H3O···N1viii 1.9100
N1···O3ix 2.7510 (15) H3O···F2A 2.8200
N2···O1iv 2.9093 (13) H3O···F2B 2.8000
N2···N3x 2.9994 (15) H4···O2ii 2.6900
N3···C1xi 3.4220 (16) H4N···O1v 2.222 (17)
N3···C12ii 3.2557 (15) H4N···C7 2.649 (16)
N3···N2xi 2.9994 (15) H4N···H7 2.0900
N4···C12xii 3.3776 (15) H5···F3Biii 2.5800
N4···O1v 3.0867 (14) H5···F3Aiii 2.4600
N4···O2vii 2.9139 (13) H7···N4 2.6000
N1···H13Ax 2.8600 H7···H4N 2.0900
N1···H3Oix 1.9100 H7···O1v 2.3600
N2···H1 2.6100 H9···O2 2.4700
N3···H1Nxi 2.122 (16) H9···F3Biii 2.8600
N3···H1xi 2.5100 H10···F1Ai 2.7300
N4···H7 2.6000 H10···F1Bi 2.7800
C1···N3x 3.4220 (16) H11···O3 2.5000
C1···C13x 3.4220 (18) H13A···N1xi 2.8600
C1···C6vi 3.4524 (15) H13A···C1xi 2.9000
C3···O2ii 3.0103 (15) H13B···F2Bvi 2.8700
C3···C5ii 3.5363 (15)
C13—O3—H3O 109.00 C9—C10—C11 118.64 (12)
C1—N1—C5 117.62 (10) N3—C11—C10 122.95 (11)
C6—N2—H2N 116.2 (11) N4—C12—C8 118.69 (10)
C6—N2—H1N 122.9 (10) O2—C12—N4 122.47 (10)
H1N—N2—H2N 120.7 (15) O2—C12—C8 118.84 (10)
C7—N3—C11 117.80 (10) C8—C7—H7 118.00
H3N—N4—H4N 117.7 (15) N3—C7—H7 118.00
C12—N4—H4N 124.6 (10) C8—C9—H9 120.00
C12—N4—H3N 117.4 (11) C10—C9—H9 120.00
N1—C1—C2 123.48 (11) C9—C10—H10 121.00
C1—C2—C6 123.54 (10) C11—C10—H10 121.00
C3—C2—C6 118.67 (9) C10—C11—H11 119.00
C1—C2—C3 117.78 (10) N3—C11—H11 119.00
C2—C3—C4 119.37 (10) O3—C13—C14B 107.67 (18)
C3—C4—C5 118.54 (12) O3—C13—C14A 115.28 (16)
N1—C5—C4 123.19 (11) F1A—C14A—F3A 108.0 (5)
O1—C6—C2 119.14 (9) F1A—C14A—F2A 106.7 (5)
N2—C6—C2 118.66 (9) F1A—C14A—C13 108.7 (4)
O1—C6—N2 122.20 (10) F2A—C14A—F3A 107.2 (5)
C2—C1—H1 118.00 F2A—C14A—C13 113.6 (4)
N1—C1—H1 118.00 F3A—C14A—C13 112.5 (4)
C2—C3—H3 120.00 F1B—C14B—F2B 106.3 (5)
C4—C3—H3 120.00 F1B—C14B—F3B 104.3 (4)
C3—C4—H4 121.00 F1B—C14B—C13 117.2 (4)
C5—C4—H4 121.00 F2B—C14B—F3B 107.0 (5)
N1—C5—H5 118.00 F2B—C14B—C13 110.6 (4)
C4—C5—H5 118.00 F3B—C14B—C13 110.7 (4)
N3—C7—C8 123.44 (11) O3—C13—H13A 108.00
C9—C8—C12 118.67 (10) O3—C13—H13B 108.00
C7—C8—C9 117.85 (10) C14A—C13—H13A 108.00
C7—C8—C12 123.48 (10) C14B—C13—H13B 98.00
C8—C9—C10 119.30 (11)
C5—N1—C1—C2 −0.71 (16) N3—C7—C8—C9 1.42 (17)
C1—N1—C5—C4 −0.62 (17) C9—C8—C12—N4 −171.07 (11)
C11—N3—C7—C8 −1.22 (17) C7—C8—C12—N4 8.74 (16)
C7—N3—C11—C10 0.22 (18) C9—C8—C12—O2 8.43 (16)
N1—C1—C2—C6 180.00 (13) C7—C8—C12—O2 −171.77 (11)
N1—C1—C2—C3 1.37 (16) C7—C8—C9—C10 −0.60 (17)
C1—C2—C6—O1 −169.45 (10) C12—C8—C9—C10 179.21 (11)
C3—C2—C6—N2 −170.96 (10) C8—C9—C10—C11 −0.30 (19)
C3—C2—C6—O1 9.14 (15) C9—C10—C11—N3 0.5 (2)
C1—C2—C6—N2 10.45 (15) O3—C13—C14B—F1B 58.1 (4)
C6—C2—C3—C4 −179.39 (10) O3—C13—C14B—F2B −64.0 (5)
C1—C2—C3—C4 −0.72 (16) O3—C13—C14B—F3B 177.6 (3)
C2—C3—C4—C5 −0.49 (17) O3—C13—C14A—F1A 62.9 (4)
C3—C4—C5—N1 1.21 (18) O3—C13—C14A—F2A −55.7 (4)
N3—C7—C8—C12 −178.39 (11) O3—C13—C14A—F3A −177.7 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x, −y+1, −z; (iv) −x+2, −y, −z+1; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) −x−1, −y+1, −z+1; (viii) x+1, y+1, z; (ix) x−1, y−1, z; (x) x, y−1, z; (xi) x, y+1, z; (xii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N···N3x 0.897 (16) 2.122 (16) 2.9994 (15) 165.7 (15)
N2—H2N···O1iv 0.898 (16) 2.013 (16) 2.9093 (13) 176.8 (14)
N4—H3N···O2vii 0.877 (16) 2.047 (16) 2.9139 (13) 170.1 (16)
O3—H3O···N1viii 0.84 1.91 2.7511 (15) 178
N4—H4N···O1v 0.878 (17) 2.222 (17) 3.0867 (14) 168.4 (15)
C1—H1···N3x 0.95 2.51 3.4220 (16) 161
C3—H3···O2ii 0.95 2.40 3.0103 (15) 122
C5—H5···F3Aiii 0.95 2.46 3.408 (7) 177
C7—H7···O1v 0.95 2.36 3.2118 (14) 149
C11—H11···O3 0.95 2.50 3.2590 (16) 137

Symmetry codes: (x) x, y−1, z; (iv) −x+2, −y, −z+1; (vii) −x−1, −y+1, −z+1; (viii) x+1, y+1, z; (v) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2234).

References

  1. Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, o1811–o1813.
  2. Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, o2430–o2432.
  3. Berry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hurthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des.8, 1697–1712.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C. (1990). Acc. Chem. Res 23, 120–126.
  6. Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des 3, 909–919.
  7. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [DOI] [PubMed]
  8. Hino, T., Ford, J. L. & Powell, M. W. (2001). Thermochimica Acta, 374, 85–92.
  9. Koman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441–o442.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  11. Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84. [DOI] [PubMed]
  12. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wright, W. B. & King, G. S. D. (1954). Acta Cryst.7, 283–288.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007594/fl2234sup1.cif

e-65-0o727-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007594/fl2234Isup2.hkl

e-65-0o727-Isup2.hkl (196.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES