Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):m455–m456. doi: 10.1107/S160053680901071X

Bis(2,2′:6′,2′′-terpyridine)cobalt(II) bis­(tricyano­methanide)

Jun Luo a, Xin-Rong Zhang a,*, Li-Juan Qiu a, Bao-Shu Liu a, Zhi-Yan Zhang b
PMCID: PMC2968836  PMID: 21582390

Abstract

The title complex, [Co(C15H11N3)2](C4N3)2, is built up from discrete [Co(terpy)2]2+ cations (terpy is 2,2′:6′,2′′-terpyridine) and [C(CN)3] anions. In the cation, the CoII atom is coordinated by two terpy mol­ecules, giving a distorted octa­hedral geometry. The tricyano­methanide anions are not directly coordinated to the CoII atom, but some weak C—H⋯N hydrogen bonds involving the terminal N atoms of the tricyaomethanide ions and the terpyridine H atoms link anions and cations building a three-dimensional network.

Related literature

For the structural characteristics and magnetic properties of tricyano­methanide coordination polymers, see: Batten et al. (1998, 2000); Batten & Murray (2003); Miller & Manson (2001); Manson et al. (1998, 2000); Manson & Schlueter (2004); Feyerherm et al. (2003, 2004); Abrahams et al. (2003); Hoshino et al. (1999); Yuste et al. (2008); Luo et al. (2008). For Co—N(terpy) distances in other cobalt–terpyridine complexes, see: Indumathy et al. (2007). For bond distances and bond angles in other tricyano­methanide complexes, see: Hoshino et al. (1999); Batten et al. (1999). For weak C—H⋯N inter­actions, see: Nardelli (1995).graphic file with name e-65-0m455-scheme1.jpg

Experimental

Crystal data

  • [Co(C15H11N3)2](C4N3)2

  • M r = 705.61

  • Monoclinic, Inline graphic

  • a = 9.042 (3) Å

  • b = 9.167 (3) Å

  • c = 40.340 (14) Å

  • β = 91.163 (6)°

  • V = 3343 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.896, T max = 0.946

  • 13582 measured reflections

  • 5880 independent reflections

  • 3009 reflections with I > 2σ(I)

  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.106

  • S = 0.96

  • 5880 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901071X/dn2438sup1.cif

e-65-0m455-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901071X/dn2438Isup2.hkl

e-65-0m455-Isup2.hkl (287.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N7 0.93 2.74 3.589 (7) 153
C8—H8⋯N9 0.93 2.71 3.347 (8) 126
C15—H15⋯N11 0.93 2.55 3.254 (6) 133
C1—H1⋯N12i 0.93 2.85 3.598 (6) 138
C23—H23⋯N11i 0.93 2.89 3.622 (6) 136
C2—H2⋯N10ii 0.93 2.77 3.670 (7) 164
C29—H29⋯N9iii 0.93 2.85 3.560 (8) 134
C17—H17⋯N8iv 0.93 2.65 3.395 (7) 137
C13—H13⋯N8v 0.93 2.65 3.379 (7) 136
C18—H18⋯N12vi 0.93 2.69 3.403 (6) 134
C22—H22⋯N10vi 0.93 2.51 3.231 (6) 134
C19—H19⋯N12vii 0.93 2.96 3.679 (6) 135
C22—H22⋯N12vii 0.93 2.92 3.645 (6) 136
C24—H24⋯N10viii 0.93 2.67 3.548 (6) 158
C27—H27⋯N10viii 0.93 2.57 3.350 (6) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (20571086).

supplementary crystallographic information

Comment

Recently, coordination polymers constructed by tricyanomethanide (tcm) have attracted considerable interest due to their unique structure characteristics and fascinating magnetic properties (Batten et al., 2003; Miller et al., 2001; Feyerherm et al., 2003). Interestingly, most binary tcm complexes reveal a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004), except that a doubly interpenetrated (6,3) sheet was detected in Ag(tcm)2 (Abrahams et al., 2003). To elucidate the structure-properties relationship of tcm complexes, diverse co-ligands such as hexamethylenetetramine, 4,4-bipyridyl, 1,2-bi(4-pyridyl)ethane were introduced and the structures as well as magnetic properties of the modified complexes have been systematically investigated. Among the Cu(I) or Cd(II) tcm complexes with these co-ligands, numerous structure types range from doubly interpenetrated (4,4) sheet to three-dimensional rutile networks were observed (Batten et al., 2000, 1998). By contrast, adjustment of the Mn(II)-tcm binary system with 4,4-bipyridyl as co-ligands leads to the formation of a one dimensional chain-like structure (Manson et al., 2004). On the other hand, 2,2':6'2''-terpyridine (terpy) has three potential nitrogen donor atoms. However, a few tcm complexes with terpy as a co-ligand have ever been reported (Yuste et al., 2008; Luo et al., 2008). To further study the role of the nature of co-ligands on the structures and properties of tricyanomethanide complexes, we herein report the synthesis and crystal structure of the new tricyanomethanide complex [Co(terpy)2](C4N3) 2 (I).

In I the cobalt ion is bonded to six N atoms from two terpyridine molecules to define the cation part, in which the basal plane is formed by the three N atoms (N1, N2, N3) of one terpy ligand and one N atom (N5) of the other terpy ligand, the apical sites are occupied by two N atoms (N4 and N6) of the latter terpy ligand. The tricyanomethanide anions do not enter the inner coordination sphere, but are linked to the cation part via weak C-H···N interactions (Fig. 1). These weak C-H···N interactions (Nardelli, 1995) build up a three dimensional network (Table 1).

In I, the Co—N(terpy) distances are in the range from 1.858 (3)Å to 2.139 (3) Å, these value are similar to the corresponding distances observed in other cobalt-terpyridine complexes (Indumathy et al., 2007).

Each tricyanomethanide moiety is almost planar. Bond distances and bond angles within the anions are in good agreement with those found in other tricyanomethanide complexes (Hoshino et al., 1999; Batten et al., 1999).

Experimental

A 5 ml e thanol solution of terpyridine (0.10 mmol, 23.33 mg) and a 2 ml aqueous pink solution of cobalt nitrate (0.10 mmol, 29.10 mg) were mixed and stirred for 5 min, the mixed solution was deep-brown. To the mixture was added a 3 ml e thanol-water solution (EtOH:H2O = 2:1, V:V) of potassium tricyanomethanide (0.20 mmol, 25.83 mg). After stirring for another 5 min, the deep-brown solution was filtered and the filtrate was slowly evaporated in air. After two week, deep-brown block crystals of I were isolated in 17% yield. Anal: Calculated for C38H22CoN12: C 64.68%, H 3.14%, N 23.82%. Found C 64.84%, H 3.22%, N 23.95%.

Refinement

The H atoms were treated as riding on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the cation-anion pair in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines.

Crystal data

[Co(C15H11N3)2](C4N3)2 F(000) = 1444
Mr = 705.61 Dx = 1.402 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 925 reflections
a = 9.042 (3) Å θ = 2.3–17.9°
b = 9.167 (3) Å µ = 0.56 mm1
c = 40.340 (14) Å T = 293 K
β = 91.163 (6)° Block, dark-brown
V = 3343 (2) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5880 independent reflections
Radiation source: fine-focus sealed tube 3009 reflections with I > 2σ(I)
graphite Rint = 0.093
φ and ω scans θmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.896, Tmax = 0.946 k = −10→7
13582 measured reflections l = −41→47

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3
5880 reflections (Δ/σ)max = 0.001
460 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.50103 (6) 0.82076 (6) 0.873406 (12) 0.04411 (18)
N1 0.5876 (3) 1.0222 (4) 0.87728 (8) 0.0463 (9)
N2 0.4973 (3) 0.8719 (4) 0.82884 (7) 0.0448 (9)
N3 0.4127 (3) 0.6366 (3) 0.85446 (8) 0.0442 (9)
N4 0.2901 (4) 0.9020 (3) 0.88713 (8) 0.0481 (9)
N5 0.4994 (4) 0.7677 (3) 0.91878 (7) 0.0390 (8)
N6 0.7138 (3) 0.7206 (3) 0.87885 (8) 0.0463 (9)
N7 0.7089 (6) 1.5090 (7) 0.78492 (11) 0.125 (2)
N8 0.5165 (6) 1.6925 (6) 0.69117 (11) 0.1123 (18)
N9 0.4373 (7) 1.2455 (7) 0.71648 (15) 0.143 (2)
N10 −0.1268 (5) 0.3628 (5) 0.98032 (11) 0.0990 (16)
N11 0.3099 (6) 0.3292 (7) 0.93731 (12) 0.134 (2)
N12 0.1971 (5) 0.0363 (5) 1.01956 (9) 0.0799 (13)
C1 0.6312 (5) 1.0933 (5) 0.90478 (11) 0.0591 (12)
H1 0.6209 1.0478 0.9252 0.071*
C2 0.6907 (5) 1.2314 (6) 0.90391 (13) 0.0734 (15)
H2 0.7200 1.2783 0.9234 0.088*
C3 0.7061 (5) 1.2981 (5) 0.87393 (15) 0.0823 (16)
H3 0.7464 1.3913 0.8728 0.099*
C4 0.6618 (5) 1.2270 (5) 0.84551 (12) 0.0665 (14)
H4 0.6721 1.2713 0.8249 0.080*
C5 0.6023 (4) 1.0899 (5) 0.84780 (11) 0.0495 (11)
C6 0.5480 (4) 1.0029 (5) 0.81958 (10) 0.0502 (11)
C7 0.5449 (5) 1.0430 (5) 0.78661 (11) 0.0687 (14)
H7 0.5823 1.1327 0.7801 0.082*
C8 0.4850 (5) 0.9473 (6) 0.76338 (11) 0.0746 (15)
H8 0.4813 0.9730 0.7411 0.090*
C9 0.4313 (5) 0.8148 (6) 0.77329 (10) 0.0677 (13)
H9 0.3899 0.7505 0.7579 0.081*
C10 0.4397 (4) 0.7784 (5) 0.80649 (10) 0.0506 (12)
C11 0.3901 (4) 0.6421 (5) 0.82150 (10) 0.0483 (11)
C12 0.3275 (5) 0.5262 (5) 0.80430 (11) 0.0651 (13)
H12 0.3131 0.5316 0.7814 0.078*
C13 0.2866 (5) 0.4027 (5) 0.82127 (13) 0.0782 (15)
H13 0.2444 0.3240 0.8100 0.094*
C14 0.3089 (5) 0.3974 (5) 0.85490 (13) 0.0686 (14)
H14 0.2815 0.3157 0.8670 0.082*
C15 0.3725 (4) 0.5155 (5) 0.87038 (11) 0.0553 (12)
H15 0.3887 0.5111 0.8932 0.066*
C16 0.1884 (5) 0.9738 (5) 0.86914 (10) 0.0570 (12)
H16 0.2067 0.9920 0.8469 0.068*
C17 0.0580 (5) 1.0218 (5) 0.88197 (11) 0.0650 (13)
H17 −0.0096 1.0734 0.8688 0.078*
C18 0.0289 (5) 0.9927 (5) 0.91433 (12) 0.0665 (14)
H18 −0.0597 1.0226 0.9235 0.080*
C19 0.1318 (5) 0.9189 (5) 0.93328 (10) 0.0569 (12)
H19 0.1140 0.8988 0.9554 0.068*
C20 0.2617 (5) 0.8748 (4) 0.91917 (10) 0.0447 (11)
C21 0.3810 (5) 0.7973 (4) 0.93730 (10) 0.0441 (10)
C22 0.3758 (5) 0.7565 (5) 0.97017 (10) 0.0575 (12)
H22 0.2949 0.7805 0.9829 0.069*
C23 0.4929 (6) 0.6797 (5) 0.98366 (10) 0.0651 (13)
H23 0.4913 0.6513 1.0058 0.078*
C24 0.6118 (5) 0.6446 (4) 0.96480 (10) 0.0521 (12)
H24 0.6889 0.5884 0.9735 0.063*
C25 0.6151 (4) 0.6943 (4) 0.93254 (10) 0.0436 (10)
C26 0.7392 (4) 0.6738 (4) 0.91018 (10) 0.0434 (10)
C27 0.8725 (5) 0.6127 (4) 0.91970 (11) 0.0582 (12)
H27 0.8894 0.5840 0.9416 0.070*
C28 0.9802 (5) 0.5945 (5) 0.89658 (13) 0.0671 (14)
H28 1.0700 0.5516 0.9026 0.081*
C29 0.9545 (5) 0.6399 (5) 0.86442 (12) 0.0709 (14)
H29 1.0257 0.6282 0.8483 0.085*
C30 0.8198 (5) 0.7032 (5) 0.85694 (10) 0.0578 (12)
H30 0.8022 0.7355 0.8354 0.069*
C31 0.6441 (6) 1.4961 (6) 0.76014 (16) 0.0919 (18)
C32 0.5614 (6) 1.4782 (7) 0.73069 (14) 0.0798 (16)
C33 0.5377 (6) 1.5952 (8) 0.70963 (15) 0.0877 (18)
C34 0.4954 (7) 1.3530 (9) 0.72316 (15) 0.095 (2)
C35 −0.0143 (7) 0.3069 (6) 0.98015 (11) 0.0685 (14)
C36 0.1248 (6) 0.2411 (5) 0.97914 (11) 0.0605 (13)
C37 0.2264 (7) 0.2885 (6) 0.95613 (13) 0.0851 (17)
C38 0.1641 (5) 0.1271 (6) 1.00156 (12) 0.0623 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0432 (4) 0.0457 (3) 0.0434 (3) 0.0000 (3) 0.0007 (2) 0.0009 (3)
N1 0.043 (2) 0.051 (2) 0.044 (2) 0.0019 (18) −0.0023 (17) 0.0019 (19)
N2 0.043 (2) 0.049 (2) 0.043 (2) −0.0044 (18) −0.0004 (17) −0.0033 (18)
N3 0.040 (2) 0.049 (2) 0.044 (2) −0.0012 (17) 0.0030 (17) −0.0019 (18)
N4 0.047 (2) 0.052 (2) 0.045 (2) 0.0024 (18) 0.0013 (18) −0.0024 (18)
N5 0.038 (2) 0.038 (2) 0.041 (2) −0.0004 (17) 0.0005 (17) 0.0006 (16)
N6 0.043 (2) 0.047 (2) 0.049 (2) −0.0055 (17) 0.0023 (18) 0.0000 (18)
N7 0.109 (5) 0.181 (6) 0.084 (4) 0.013 (4) −0.007 (3) 0.006 (4)
N8 0.137 (5) 0.114 (5) 0.087 (4) 0.011 (4) 0.004 (3) −0.002 (3)
N9 0.137 (6) 0.116 (5) 0.176 (6) −0.024 (4) −0.028 (4) 0.016 (4)
N10 0.082 (4) 0.086 (4) 0.129 (4) 0.016 (3) 0.010 (3) 0.036 (3)
N11 0.106 (4) 0.194 (6) 0.104 (4) −0.018 (4) 0.023 (3) 0.068 (4)
N12 0.090 (4) 0.076 (3) 0.073 (3) 0.004 (3) 0.001 (2) 0.013 (2)
C1 0.054 (3) 0.063 (3) 0.060 (3) 0.004 (3) −0.008 (2) 0.003 (3)
C2 0.062 (4) 0.062 (4) 0.097 (4) −0.002 (3) −0.010 (3) −0.019 (3)
C3 0.073 (4) 0.050 (3) 0.123 (5) −0.010 (3) −0.008 (3) −0.008 (4)
C4 0.062 (4) 0.053 (3) 0.084 (4) −0.003 (3) −0.003 (3) 0.009 (3)
C5 0.036 (3) 0.043 (3) 0.069 (3) −0.001 (2) 0.000 (2) 0.011 (3)
C6 0.048 (3) 0.056 (3) 0.046 (3) 0.002 (2) 0.000 (2) 0.003 (3)
C7 0.076 (4) 0.071 (4) 0.059 (3) −0.006 (3) 0.004 (3) 0.019 (3)
C8 0.076 (4) 0.096 (4) 0.053 (3) −0.001 (3) 0.002 (3) 0.015 (3)
C9 0.075 (4) 0.082 (4) 0.046 (3) −0.008 (3) −0.003 (2) 0.002 (3)
C10 0.052 (3) 0.063 (3) 0.037 (3) 0.001 (2) 0.001 (2) 0.002 (2)
C11 0.042 (3) 0.055 (3) 0.047 (3) 0.004 (2) 0.002 (2) −0.007 (2)
C12 0.069 (4) 0.071 (4) 0.055 (3) −0.009 (3) −0.002 (3) −0.018 (3)
C13 0.078 (4) 0.068 (4) 0.089 (4) −0.020 (3) −0.003 (3) −0.014 (3)
C14 0.070 (4) 0.053 (3) 0.082 (4) −0.015 (3) 0.001 (3) 0.002 (3)
C15 0.048 (3) 0.058 (3) 0.060 (3) −0.005 (3) 0.007 (2) 0.004 (3)
C16 0.059 (4) 0.065 (3) 0.047 (3) 0.010 (3) 0.002 (3) 0.003 (2)
C17 0.055 (4) 0.077 (4) 0.063 (3) 0.015 (3) −0.011 (3) 0.002 (3)
C18 0.048 (3) 0.085 (4) 0.066 (3) 0.013 (3) 0.003 (3) −0.012 (3)
C19 0.050 (3) 0.071 (3) 0.050 (3) 0.005 (3) 0.000 (3) −0.015 (2)
C20 0.043 (3) 0.045 (3) 0.047 (3) 0.003 (2) 0.002 (2) −0.005 (2)
C21 0.049 (3) 0.040 (3) 0.043 (3) −0.004 (2) 0.003 (2) 0.000 (2)
C22 0.061 (3) 0.059 (3) 0.053 (3) 0.001 (3) 0.013 (2) 0.004 (2)
C23 0.072 (4) 0.074 (3) 0.050 (3) 0.003 (3) 0.004 (3) 0.014 (3)
C24 0.059 (3) 0.044 (3) 0.053 (3) 0.002 (2) −0.005 (2) 0.007 (2)
C25 0.044 (3) 0.038 (2) 0.048 (3) −0.006 (2) 0.000 (2) −0.002 (2)
C26 0.041 (3) 0.036 (2) 0.053 (3) 0.001 (2) −0.006 (2) −0.002 (2)
C27 0.048 (3) 0.060 (3) 0.066 (3) 0.002 (3) −0.003 (3) 0.003 (2)
C28 0.044 (3) 0.059 (3) 0.098 (4) 0.006 (2) −0.001 (3) 0.000 (3)
C29 0.056 (4) 0.071 (4) 0.085 (4) 0.003 (3) 0.017 (3) 0.001 (3)
C30 0.061 (3) 0.055 (3) 0.058 (3) −0.005 (3) 0.009 (3) −0.001 (2)
C31 0.078 (5) 0.112 (5) 0.086 (5) 0.005 (4) 0.013 (4) −0.001 (4)
C32 0.072 (4) 0.095 (5) 0.072 (4) 0.001 (4) 0.000 (3) 0.008 (4)
C33 0.088 (5) 0.107 (6) 0.068 (4) 0.001 (4) 0.002 (4) −0.021 (4)
C34 0.075 (5) 0.114 (7) 0.096 (5) −0.006 (4) −0.007 (4) 0.008 (5)
C35 0.082 (4) 0.056 (4) 0.068 (3) −0.003 (3) 0.002 (3) 0.014 (3)
C36 0.069 (4) 0.060 (3) 0.053 (3) −0.006 (3) −0.001 (3) 0.011 (3)
C37 0.081 (4) 0.102 (5) 0.072 (4) −0.003 (4) −0.011 (3) 0.024 (3)
C38 0.065 (4) 0.067 (4) 0.056 (3) −0.009 (3) 0.005 (3) −0.007 (3)

Geometric parameters (Å, °)

Co1—N2 1.858 (3) C10—C11 1.463 (5)
Co1—N5 1.894 (3) C11—C12 1.384 (5)
Co1—N1 2.011 (3) C12—C13 1.377 (6)
Co1—N3 2.012 (3) C12—H12 0.9300
Co1—N4 2.131 (3) C13—C14 1.368 (5)
Co1—N6 2.139 (3) C13—H13 0.9300
N1—C1 1.339 (5) C14—C15 1.370 (5)
N1—C5 1.350 (5) C14—H14 0.9300
N2—C6 1.341 (5) C15—H15 0.9300
N2—C10 1.342 (4) C16—C17 1.370 (5)
N3—C15 1.337 (5) C16—H16 0.9300
N3—C11 1.342 (4) C17—C18 1.363 (5)
N4—C16 1.334 (4) C17—H17 0.9300
N4—C20 1.346 (4) C18—C19 1.371 (5)
N5—C21 1.346 (4) C18—H18 0.9300
N5—C25 1.354 (4) C19—C20 1.376 (5)
N6—C30 1.326 (5) C19—H19 0.9300
N6—C26 1.350 (4) C20—C21 1.473 (5)
N7—C31 1.155 (6) C21—C22 1.379 (5)
N8—C33 1.176 (7) C22—C23 1.375 (5)
N9—C34 1.146 (7) C22—H22 0.9300
N10—C35 1.139 (6) C23—C24 1.368 (5)
N11—C37 1.144 (6) C23—H23 0.9300
N12—C38 1.141 (5) C24—C25 1.379 (5)
C1—C2 1.376 (6) C24—H24 0.9300
C1—H1 0.9300 C25—C26 1.466 (5)
C2—C3 1.365 (6) C26—C27 1.377 (5)
C2—H2 0.9300 C27—C28 1.372 (5)
C3—C4 1.371 (5) C27—H27 0.9300
C3—H3 0.9300 C28—C29 1.378 (5)
C4—C5 1.371 (5) C28—H28 0.9300
C4—H4 0.9300 C29—C30 1.377 (6)
C5—C6 1.466 (5) C29—H29 0.9300
C6—C7 1.380 (5) C30—H30 0.9300
C7—C8 1.385 (6) C31—C32 1.400 (7)
C7—H7 0.9300 C32—C34 1.327 (8)
C8—C9 1.370 (6) C32—C33 1.382 (7)
C8—H8 0.9300 C35—C36 1.396 (6)
C9—C10 1.381 (5) C36—C37 1.389 (7)
C9—H9 0.9300 C36—C38 1.423 (6)
N2—Co1—N5 178.48 (14) C11—C12—H12 120.2
N2—Co1—N1 80.96 (14) C14—C13—C12 119.1 (4)
N5—Co1—N1 99.85 (13) C14—C13—H13 120.5
N2—Co1—N3 81.07 (14) C12—C13—H13 120.5
N5—Co1—N3 98.11 (13) C13—C14—C15 118.4 (4)
N1—Co1—N3 162.03 (14) C13—C14—H14 120.8
N2—Co1—N4 99.46 (14) C15—C14—H14 120.8
N5—Co1—N4 79.28 (14) N3—C15—C14 123.6 (4)
N1—Co1—N4 90.45 (12) N3—C15—H15 118.2
N3—Co1—N4 92.38 (12) C14—C15—H15 118.2
N2—Co1—N6 101.91 (13) N4—C16—C17 122.8 (4)
N5—Co1—N6 79.36 (13) N4—C16—H16 118.6
N1—Co1—N6 92.19 (12) C17—C16—H16 118.6
N3—Co1—N6 91.61 (12) C18—C17—C16 118.9 (4)
N4—Co1—N6 158.61 (13) C18—C17—H17 120.6
C1—N1—C5 118.3 (4) C16—C17—H17 120.6
C1—N1—Co1 128.3 (3) C17—C18—C19 119.3 (4)
C5—N1—Co1 113.5 (3) C17—C18—H18 120.4
C6—N2—C10 121.0 (3) C19—C18—H18 120.4
C6—N2—Co1 119.7 (3) C18—C19—C20 119.3 (4)
C10—N2—Co1 119.2 (3) C18—C19—H19 120.4
C15—N3—C11 118.0 (3) C20—C19—H19 120.4
C15—N3—Co1 128.6 (3) N4—C20—C19 121.6 (4)
C11—N3—Co1 113.4 (3) N4—C20—C21 114.4 (4)
C16—N4—C20 118.1 (4) C19—C20—C21 123.9 (4)
C16—N4—Co1 129.9 (3) N5—C21—C22 121.5 (4)
C20—N4—Co1 112.0 (3) N5—C21—C20 113.8 (4)
C21—N5—C25 119.3 (3) C22—C21—C20 124.7 (4)
C21—N5—Co1 120.5 (3) C23—C22—C21 118.6 (4)
C25—N5—Co1 120.2 (3) C23—C22—H22 120.7
C30—N6—C26 118.3 (4) C21—C22—H22 120.7
C30—N6—Co1 130.1 (3) C24—C23—C22 120.5 (4)
C26—N6—Co1 111.6 (3) C24—C23—H23 119.7
N1—C1—C2 122.4 (4) C22—C23—H23 119.7
N1—C1—H1 118.8 C23—C24—C25 118.6 (4)
C2—C1—H1 118.8 C23—C24—H24 120.7
C3—C2—C1 118.8 (5) C25—C24—H24 120.7
C3—C2—H2 120.6 N5—C25—C24 121.3 (4)
C1—C2—H2 120.6 N5—C25—C26 114.0 (4)
C2—C3—C4 119.6 (5) C24—C25—C26 124.7 (4)
C2—C3—H3 120.2 N6—C26—C27 121.5 (4)
C4—C3—H3 120.2 N6—C26—C25 114.7 (4)
C5—C4—C3 119.2 (5) C27—C26—C25 123.8 (4)
C5—C4—H4 120.4 C28—C27—C26 119.3 (4)
C3—C4—H4 120.4 C28—C27—H27 120.4
N1—C5—C4 121.7 (4) C26—C27—H27 120.4
N1—C5—C6 113.4 (4) C27—C28—C29 119.7 (4)
C4—C5—C6 124.9 (4) C27—C28—H28 120.1
N2—C6—C7 120.4 (4) C29—C28—H28 120.1
N2—C6—C5 112.4 (4) C30—C29—C28 117.7 (4)
C7—C6—C5 127.1 (4) C30—C29—H29 121.2
C6—C7—C8 118.9 (4) C28—C29—H29 121.2
C6—C7—H7 120.5 N6—C30—C29 123.5 (4)
C8—C7—H7 120.5 N6—C30—H30 118.2
C9—C8—C7 120.0 (4) C29—C30—H30 118.2
C9—C8—H8 120.0 N7—C31—C32 178.0 (7)
C7—C8—H8 120.0 C34—C32—C33 117.9 (6)
C8—C9—C10 119.0 (4) C34—C32—C31 121.7 (6)
C8—C9—H9 120.5 C33—C32—C31 120.3 (6)
C10—C9—H9 120.5 N8—C33—C32 178.5 (7)
N2—C10—C9 120.7 (4) N9—C34—C32 179.3 (8)
N2—C10—C11 112.7 (4) N10—C35—C36 178.2 (6)
C9—C10—C11 126.6 (4) C37—C36—C35 119.5 (4)
N3—C11—C12 121.4 (4) C37—C36—C38 119.6 (5)
N3—C11—C10 113.6 (4) C35—C36—C38 120.8 (4)
C12—C11—C10 125.0 (4) N11—C37—C36 179.2 (8)
C13—C12—C11 119.5 (4) N12—C38—C36 179.2 (6)
C13—C12—H12 120.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···N7 0.93 2.74 3.589 (7) 153
C8—H8···N9 0.93 2.71 3.347 (8) 126
C15—H15···N11 0.93 2.55 3.254 (6) 133
C1—H1···N12i 0.93 2.85 3.598 (6) 138
C23—H23···N11i 0.93 2.89 3.622 (6) 136
C2—H2···N10ii 0.93 2.77 3.670 (7) 164
C29—H29···N9iii 0.93 2.85 3.560 (8) 134
C17—H17···N8iv 0.93 2.65 3.395 (7) 137
C13—H13···N8v 0.93 2.65 3.379 (7) 136
C18—H18···N12vi 0.93 2.69 3.403 (6) 134
C22—H22···N10vi 0.93 2.51 3.231 (6) 134
C19—H19···N12vii 0.93 2.96 3.679 (6) 135
C22—H22···N12vii 0.93 2.92 3.645 (6) 136
C24—H24···N10viii 0.93 2.67 3.548 (6) 158
C27—H27···N10viii 0.93 2.57 3.350 (6) 142

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y+1, z; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1/2, y−3/2, −z+3/2; (vi) −x, −y+1, −z+2; (vii) x, y+1, z; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2438).

References

  1. Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem.42, 2654–2664. [DOI] [PubMed]
  2. Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986.
  3. Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem.37, 3432–3434.
  4. Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J.6, 156–161. [DOI] [PubMed]
  5. Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev.246, 103–130.
  6. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem.43, 6633–6639. [DOI] [PubMed]
  8. Feyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663–673.
  9. Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem.38, 4229–4232.
  10. Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2007). J. Inorg. Biochem.101, 434–443. [DOI] [PubMed]
  11. Luo, J., Zhang, X.-R., Dai, W.-Q., Cui, L.-L. & Liu, B.-S. (2008). Acta Cryst. E64, m1322–m1323. [DOI] [PMC free article] [PubMed]
  12. Manson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251–252.
  13. Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem.39, 1135–1141. [DOI] [PubMed]
  14. Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979.
  15. Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res.34, 563–570. [DOI] [PubMed]
  16. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  17. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). J. Chem. Soc. Dalton Trans. pp. 1583–1596. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901071X/dn2438sup1.cif

e-65-0m455-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901071X/dn2438Isup2.hkl

e-65-0m455-Isup2.hkl (287.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES