Abstract
In the title compound, [Cu(C20H12Br2N2O2)(CH3OH)], the CuII ion, and the C, O and hydroxy H atoms of the coordinated methanol molecule are located on a twofold rotation axis, while the methyl H atoms are disordered over two sites about the rotation axis. The CuII ion is coordinated by two N atoms [Cu—N = 1.960 (4) Å] and two O atoms [Cu—O = 1.908 (4) Å] from the tetradentate Schiff base ligand and by one O atom [Cu—O = 2.324 (6) Å] of the methanol molecule in a square-pyramidal geometry. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link complex molecules into extended chains along [001].
Related literature
For a related crystal structure, see Saha et al. (2007 ▶). For general background related to Schiff base compounds, see: Ghosh et al. (2006 ▶); Nayka et al. (2006 ▶); Singh et al. (2007 ▶); Yu et al. (2007 ▶).
Experimental
Crystal data
[Cu(C20H12Br2N2O2)(CH4O)]
M r = 567.72
Orthorhombic,
a = 19.164 (4) Å
b = 19.416 (4) Å
c = 5.3287 (10) Å
V = 1982.7 (6) Å3
Z = 4
Mo Kα radiation
μ = 5.16 mm−1
T = 273 K
0.21 × 0.15 × 0.13 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.411, T max = 0.554 (expected range = 0.379–0.511)
9881 measured reflections
2004 independent reflections
1517 reflections with I > 2σ(I)
R int = 0.046
Refinement
R[F 2 > 2σ(F 2)] = 0.043
wR(F 2) = 0.111
S = 1.06
2004 reflections
137 parameters
242 restraints
H-atom parameters constrained
Δρmax = 1.23 e Å−3
Δρmin = −1.82 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT-Plus (Bruker, 2001 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011179/lh2794sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011179/lh2794Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2A⋯O1i | 0.82 | 2.30 | 3.009 (6) | 145 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some may exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayka et al., 2006). Here, we report a new Cu(II) complex based on the tetradentate Schiff-base ligand 4,5-dibromo-1,2-diaminobenzene-N,N'-bis (salicylideneimine).
The molecular structure of the title compound is shown in Fig. 1. The CuII ion is pentacoordinated with the four basal sites occupied by two N atoms and two O atoms of the Schiff-base ligand, while the apical site is occupied by the O atom of the coordinated methanol molecule. The CuII ion is displaced towards the Cu—Omethanol bond from the plane formed by the two N atoms and two O atoms by 0.1017 Å,. The coordination geometry of the CuII ion is square-pyramidal. The Cu—N, Cu—O and Cu—Omethanol bond lengths are consistent with the corresponding distances in aqua-(N,N'-ethylenebis(3-methoxysalicylaldiminato)-N,N',\ O,O')copper(II) (Saha, et al., 2007).
Experimental
The Schiff base ligand was synthesized by condensation of 4,5-dibromo-1,2-diaminobenzene and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Cu(ClO4)2.6H2O, and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about 10 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 55%.
Refinement
H atoms were included using the HFIX command in SHELXL-97 (Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O-H = 0.82Å and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).
Figures
Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. Unlabelled atoms are related by the symmetry operator (x, -y+3/2, z).
Crystal data
| [Cu(C20H12Br2N2O2)(CH4O)] | F(000) = 1116 |
| Mr = 567.72 | Dx = 1.902 Mg m−3Dm = 1.902 Mg m−3Dm measured by not measured |
| Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2n | Cell parameters from 1834 reflections |
| a = 19.164 (4) Å | θ = 3.0–22.2° |
| b = 19.416 (4) Å | µ = 5.16 mm−1 |
| c = 5.3287 (10) Å | T = 273 K |
| V = 1982.7 (6) Å3 | Block, red |
| Z = 4 | 0.21 × 0.15 × 0.13 mm |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 2004 independent reflections |
| Radiation source: fine-focus sealed tube | 1517 reflections with I > 2σ(I) |
| graphite | Rint = 0.046 |
| φ and ω scans | θmax = 26.0°, θmin = 2.1° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→16 |
| Tmin = 0.411, Tmax = 0.554 | k = −23→23 |
| 9881 measured reflections | l = −6→6 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.111 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0453P)2 + 5.5878P] where P = (Fo2 + 2Fc2)/3 |
| 2004 reflections | (Δ/σ)max < 0.001 |
| 137 parameters | Δρmax = 1.23 e Å−3 |
| 242 restraints | Δρmin = −1.82 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cu1 | 0.12529 (5) | 0.7500 | 1.11061 (15) | 0.0314 (2) | |
| Br1 | −0.10466 (3) | 0.66291 (3) | 0.15521 (10) | 0.0450 (2) | |
| O1 | 0.1647 (2) | 0.68206 (19) | 1.3271 (6) | 0.0423 (9) | |
| O2 | 0.2119 (3) | 0.7500 | 0.8053 (11) | 0.0547 (10) | |
| H2A | 0.1990 | 0.7500 | 0.6587 | 0.066* | |
| N1 | 0.0729 (2) | 0.6827 (2) | 0.9116 (7) | 0.0301 (9) | |
| C1 | 0.0321 (3) | 0.7138 (3) | 0.7227 (9) | 0.0347 (9) | |
| C2 | −0.0080 (3) | 0.6782 (3) | 0.5479 (9) | 0.0367 (9) | |
| H2 | −0.0076 | 0.6304 | 0.5456 | 0.044* | |
| C3 | −0.0485 (3) | 0.7142 (3) | 0.3777 (9) | 0.0327 (10) | |
| C4 | 0.0738 (3) | 0.6172 (3) | 0.9476 (10) | 0.0394 (8) | |
| H4 | 0.0472 | 0.5905 | 0.8391 | 0.047* | |
| C5 | 0.1119 (3) | 0.5817 (3) | 1.1386 (9) | 0.0392 (8) | |
| C6 | 0.1546 (3) | 0.6165 (3) | 1.3181 (9) | 0.0397 (9) | |
| C7 | 0.1889 (3) | 0.5735 (3) | 1.4984 (10) | 0.0416 (9) | |
| H7 | 0.2177 | 0.5936 | 1.6182 | 0.050* | |
| C8 | 0.1056 (3) | 0.5104 (3) | 1.1487 (10) | 0.0425 (9) | |
| H8 | 0.0772 | 0.4889 | 1.0308 | 0.051* | |
| C9 | 0.1388 (3) | 0.4700 (3) | 1.3222 (10) | 0.0441 (10) | |
| H9 | 0.1339 | 0.4224 | 1.3226 | 0.053* | |
| C10 | 0.1804 (3) | 0.5040 (3) | 1.4990 (11) | 0.0433 (10) | |
| H10 | 0.2030 | 0.4779 | 1.6207 | 0.052* | |
| C11 | 0.2775 (5) | 0.7500 | 0.8417 (18) | 0.067 (2) | |
| H11A | 0.3003 | 0.7274 | 0.7040 | 0.101* | 0.50 |
| H11B | 0.2878 | 0.7260 | 0.9947 | 0.101* | 0.50 |
| H11C | 0.2938 | 0.7966 | 0.8539 | 0.101* | 0.50 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0344 (5) | 0.0327 (5) | 0.0269 (4) | 0.000 | −0.0054 (4) | 0.000 |
| Br1 | 0.0519 (4) | 0.0464 (4) | 0.0369 (3) | −0.0063 (3) | −0.0153 (2) | −0.0044 (2) |
| O1 | 0.053 (2) | 0.039 (2) | 0.036 (2) | 0.0042 (18) | −0.0152 (17) | 0.0006 (16) |
| O2 | 0.048 (2) | 0.076 (2) | 0.040 (2) | 0.000 | −0.0030 (18) | 0.000 |
| N1 | 0.031 (2) | 0.032 (2) | 0.027 (2) | 0.0034 (18) | −0.0029 (17) | 0.0005 (18) |
| C1 | 0.0348 (17) | 0.0422 (17) | 0.0272 (16) | 0.0003 (15) | −0.0009 (15) | 0.0008 (15) |
| C2 | 0.0377 (19) | 0.042 (2) | 0.0308 (18) | −0.0010 (17) | −0.0037 (17) | 0.0007 (17) |
| C3 | 0.033 (2) | 0.040 (2) | 0.0252 (19) | −0.0030 (18) | −0.0033 (17) | −0.0008 (18) |
| C4 | 0.0398 (16) | 0.0449 (17) | 0.0336 (16) | 0.0007 (15) | −0.0047 (14) | 0.0008 (14) |
| C5 | 0.0406 (17) | 0.0443 (17) | 0.0327 (16) | 0.0021 (15) | −0.0034 (15) | 0.0009 (15) |
| C6 | 0.0397 (17) | 0.0469 (18) | 0.0326 (16) | 0.0026 (16) | −0.0015 (15) | 0.0020 (15) |
| C7 | 0.0446 (19) | 0.0446 (19) | 0.0355 (18) | 0.0035 (18) | −0.0059 (17) | 0.0017 (17) |
| C8 | 0.0452 (18) | 0.0444 (18) | 0.0380 (18) | 0.0005 (17) | −0.0052 (16) | 0.0017 (16) |
| C9 | 0.048 (2) | 0.044 (2) | 0.0400 (19) | 0.0020 (18) | −0.0039 (17) | 0.0039 (17) |
| C10 | 0.047 (2) | 0.0451 (19) | 0.0381 (19) | 0.0044 (18) | −0.0044 (17) | 0.0055 (17) |
| C11 | 0.052 (4) | 0.090 (4) | 0.060 (4) | 0.000 | 0.002 (4) | 0.000 |
Geometric parameters (Å, °)
| Cu1—O1i | 1.908 (4) | C4—C5 | 1.430 (7) |
| Cu1—O1 | 1.908 (3) | C4—H4 | 0.9300 |
| Cu1—N1i | 1.960 (4) | C5—C8 | 1.390 (8) |
| Cu1—N1 | 1.960 (4) | C5—C6 | 1.429 (7) |
| Cu1—O2 | 2.324 (6) | C6—C7 | 1.432 (7) |
| Br1—C3 | 1.886 (5) | C7—C10 | 1.358 (8) |
| O1—C6 | 1.289 (7) | C7—H7 | 0.9300 |
| O2—C11 | 1.271 (9) | C8—C9 | 1.368 (7) |
| O2—H2A | 0.8199 | C8—H8 | 0.9300 |
| N1—C4 | 1.285 (7) | C9—C10 | 1.399 (8) |
| N1—C1 | 1.410 (6) | C9—H9 | 0.9300 |
| C1—C2 | 1.392 (7) | C10—H10 | 0.9300 |
| C1—C1i | 1.405 (10) | C11—H11A | 0.9600 |
| C2—C3 | 1.383 (7) | C11—H11B | 0.9600 |
| C2—H2 | 0.9300 | C11—H11C | 0.9600 |
| C3—C3i | 1.388 (10) | ||
| O1i—Cu1—O1 | 87.5 (2) | N1—C4—H4 | 116.9 |
| O1i—Cu1—N1i | 93.95 (16) | C5—C4—H4 | 116.9 |
| O1—Cu1—N1i | 172.22 (18) | C8—C5—C6 | 119.6 (5) |
| O1i—Cu1—N1 | 172.22 (18) | C8—C5—C4 | 117.7 (5) |
| O1—Cu1—N1 | 93.95 (16) | C6—C5—C4 | 122.7 (5) |
| N1i—Cu1—N1 | 83.6 (2) | O1—C6—C5 | 125.3 (5) |
| O1i—Cu1—O2 | 98.09 (16) | O1—C6—C7 | 118.9 (5) |
| O1—Cu1—O2 | 98.09 (16) | C5—C6—C7 | 115.9 (5) |
| N1i—Cu1—O2 | 89.29 (16) | C10—C7—C6 | 121.7 (5) |
| N1—Cu1—O2 | 89.29 (16) | C10—C7—H7 | 119.1 |
| C6—O1—Cu1 | 127.0 (3) | C6—C7—H7 | 119.1 |
| C11—O2—Cu1 | 126.8 (6) | C9—C8—C5 | 123.8 (5) |
| C11—O2—H2A | 116.4 | C9—C8—H8 | 118.1 |
| Cu1—O2—H2A | 116.8 | C5—C8—H8 | 118.1 |
| C4—N1—C1 | 122.6 (4) | C8—C9—C10 | 116.7 (6) |
| C4—N1—Cu1 | 124.8 (3) | C8—C9—H9 | 121.6 |
| C1—N1—Cu1 | 112.6 (3) | C10—C9—H9 | 121.6 |
| C2—C1—C1i | 119.8 (3) | C7—C10—C9 | 122.3 (5) |
| C2—C1—N1 | 124.8 (5) | C7—C10—H10 | 119.2 |
| C1i—C1—N1 | 115.4 (3) | C9—C10—H10 | 118.5 |
| C3—C2—C1 | 119.9 (5) | O2—C11—H11A | 109.5 |
| C3—C2—H2 | 120.1 | O2—C11—H11B | 109.5 |
| C1—C2—H2 | 120.1 | H11A—C11—H11B | 109.5 |
| C2—C3—C3i | 120.3 (3) | O2—C11—H11C | 109.5 |
| C2—C3—Br1 | 117.7 (4) | H11A—C11—H11C | 109.5 |
| C3i—C3—Br1 | 121.90 (15) | H11B—C11—H11C | 109.5 |
| N1—C4—C5 | 126.3 (5) |
Symmetry codes: (i) x, −y+3/2, z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2A···O1ii | 0.82 | 2.30 | 3.009 (6) | 145 |
Symmetry codes: (ii) x, y, z−1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2794).
References
- Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.
- Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.45, 10764–10773. [DOI] [PubMed]
- Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394–402. [DOI] [PubMed]
- Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401–403.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011179/lh2794sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011179/lh2794Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

