Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):m470. doi: 10.1107/S1600536809011283

Tetra­aqua­bis[3-(2-pyridylsulfan­yl)propionato N-oxide]nickel(II)

B Ravindran Durai Nayagam a,*, Samuel Robinson Jebas b, J P Edward Rajkumar c, Dieter Schollmeyer d
PMCID: PMC2968857  PMID: 21582400

Abstract

In the centrosymmetric title compound, [Ni(C8H8NO3S)2(H2O)4], the NiII ion, which lies on an inversion centre, is six coordinated by four water mol­ecules and two propionate O atoms from two 2-pyridylsulfanylpropionate N-oxide ligands, forming a slightly distorted octa­hedral geometry. An intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular conformation. The crystal packing is consolidated by inter­molecular O—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For the biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991). Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For related literature, see: Jebas et al. (2005); Ravindran et al. (2008).graphic file with name e-65-0m470-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H8NO3S)2(H2O)4]

  • M r = 527.20

  • Triclinic, Inline graphic

  • a = 4.8155 (5) Å

  • b = 8.7650 (10) Å

  • c = 12.9560 (15) Å

  • α = 86.400 (2)°

  • β = 79.501 (2)°

  • γ = 84.929 (2)°

  • V = 534.98 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 173 K

  • 0.35 × 0.28 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.405, T max = 0.492 (expected range = 0.759–0.922)

  • 9627 measured reflections

  • 2615 independent reflections

  • 2501 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.055

  • S = 1.05

  • 2615 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011283/bt2915sup1.cif

e-65-0m470-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011283/bt2915Isup2.hkl

e-65-0m470-Isup2.hkl (128.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O13 2.0488 (8)
Ni1—O15 2.0644 (8)
Ni1—O14 2.0898 (8)
N1—O7 1.3154 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14A⋯O12 0.81 1.84 2.6248 (12) 162
O14—H14B⋯O15i 0.81 2.27 2.9517 (12) 142
O14—H14B⋯O13i 0.81 2.64 3.2316 (12) 131
O15—H15A⋯O7ii 0.82 1.83 2.6469 (12) 172
O15—H15B⋯O13iii 0.83 1.83 2.6570 (11) 172
C4—H4⋯O12iv 0.95 2.48 3.2044 (17) 133
C6—H6⋯O14v 0.95 2.46 3.2515 (16) 140
C10—H10B⋯O12vi 0.99 2.42 3.3910 (14) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons & West, 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N–oxides bearing a sulfur group in position two display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N–oxides, we have previously reported the crystal structures of N–oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on N–oxide derivatives, we report here the crystal structure of the title compound.

The asymmetric unit comprises of half molecule of the title compound, the other half is symmetry generated [symmetry code: -x + 1,-y + 1,-z + 1]. The NiII ion which lies on an inversion centre is six coordinated by four water molecules and two propianoto oxygen atoms from two 2-pyridylsulfanylpropionato N-oxide ligands forming a slightly distorted octahedral geometry. The bond lengths and angles agree well with the N–oxide derivatives reported earlier (Jebas et al., 2005)

Intramolecular O—H···O hydrogen bonding influences the conformation of the molecule. The crystal packing (Fig. 2) is consolidated by intermolecular O—H···O and C—H···O hydrogen bonding together with intramolecular S···O = 2.6968 (10) Å; O···O = 2.6248 (12) Å, intermolecular O···Oi = 2.6469 (12) Å; O···Oii = 2.6570 (12) Å and O···Oiii = 2.9455 (12) Å [symmetry code: (i):1 + x,y,-1 + z; (ii) 2 - x,1 - y,1 - z; (iii) 1 - x,1 - y,1 - z] short contacts. The molecules are stacked along the a axis.

Experimental

A mixture of the potassium salt of 3(1-oxo-pyridinine- 2-sulfanyl)propionic acid (0.237 g,1 mmol) and Nickel (II) chloride (0.13 g, 0.5 mmol), in water (20 ml) was heated at 333k with continous stirring for one hour. The solution was kept aside for slow evaporation. After two weeks, green colored crystals were obtained.

Refinement

After checking their presence in the Fourier map, all the hydrogen atoms were fixed on the calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å (aromatic), C—H = 0.99 Å (methylene) and O—H = 0.81–0.82 Å (water) with Uiso(C) in the range of 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Symmetry code: -x + 1,-y + 1,-z + 1.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis. Molecules are stacked along the a axis.

Crystal data

[Ni(C8H8NO3S)2(H2O)4] Z = 1
Mr = 527.20 F(000) = 274
Triclinic, P1 Dx = 1.636 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 4.8155 (5) Å Cell parameters from 6946 reflections
b = 8.765 (1) Å θ = 2.3–28.2°
c = 12.9560 (15) Å µ = 1.16 mm1
α = 86.400 (2)° T = 173 K
β = 79.501 (2)° Plate, green
γ = 84.929 (2)° 0.35 × 0.28 × 0.07 mm
V = 534.98 (10) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 2615 independent reflections
Radiation source: sealed Tube 2501 reflections with I > 2σ(I)
graphite Rint = 0.017
CCD scan θmax = 28.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −6→6
Tmin = 0.405, Tmax = 0.492 k = −11→11
9627 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.2035P] where P = (Fo2 + 2Fc2)/3
2615 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.01405 (6)
N1 1.2267 (2) 0.77325 (12) −0.20598 (8) 0.0197 (2)
C2 1.0696 (2) 0.79224 (13) −0.10776 (8) 0.0167 (2)
C3 0.8347 (3) 0.89789 (14) −0.09608 (9) 0.0212 (2)
H3 0.7229 0.9119 −0.0285 0.025*
C4 0.7627 (3) 0.98279 (15) −0.18222 (10) 0.0254 (3)
H4 0.6027 1.0555 −0.1741 0.031*
C5 0.9266 (3) 0.96061 (16) −0.28069 (10) 0.0291 (3)
H5 0.8794 1.0180 −0.3406 0.035*
C6 1.1567 (3) 0.85564 (16) −0.29110 (10) 0.0274 (3)
H6 1.2685 0.8403 −0.3586 0.033*
O7 1.44740 (19) 0.67209 (11) −0.21521 (7) 0.0264 (2)
S8 1.19805 (6) 0.67388 (3) −0.01121 (2) 0.01821 (7)
C9 0.9142 (2) 0.70873 (14) 0.09994 (8) 0.0176 (2)
H9A 0.8880 0.8194 0.1136 0.021*
H9B 0.7344 0.6765 0.0848 0.021*
C10 0.9942 (2) 0.61698 (13) 0.19529 (8) 0.0177 (2)
H10A 1.0268 0.5071 0.1796 0.021*
H10B 1.1730 0.6511 0.2100 0.021*
C11 0.7643 (2) 0.63642 (13) 0.29187 (8) 0.0159 (2)
O12 0.55540 (18) 0.72858 (11) 0.28796 (7) 0.02341 (18)
O13 0.80467 (17) 0.55410 (10) 0.37393 (6) 0.01937 (17)
O14 0.26378 (17) 0.70791 (10) 0.47964 (6) 0.01973 (17)
H14A 0.3264 0.7271 0.4179 0.030*
H14B 0.0952 0.7007 0.4849 0.030*
O15 0.71999 (16) 0.60521 (10) 0.59458 (6) 0.01836 (17)
H15A 0.6207 0.6252 0.6514 0.028*
H15B 0.8596 0.5522 0.6092 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01095 (10) 0.01935 (11) 0.01075 (10) 0.00213 (7) −0.00158 (7) 0.00208 (7)
N1 0.0229 (5) 0.0205 (5) 0.0145 (4) −0.0001 (4) −0.0011 (4) −0.0011 (4)
C2 0.0191 (5) 0.0181 (5) 0.0127 (5) −0.0037 (4) −0.0019 (4) −0.0001 (4)
C3 0.0223 (5) 0.0220 (6) 0.0178 (5) 0.0001 (4) −0.0012 (4) 0.0002 (4)
C4 0.0277 (6) 0.0222 (6) 0.0259 (6) 0.0029 (5) −0.0068 (5) 0.0018 (5)
C5 0.0399 (7) 0.0273 (6) 0.0199 (6) 0.0009 (5) −0.0090 (5) 0.0055 (5)
C6 0.0377 (7) 0.0291 (6) 0.0135 (5) 0.0006 (5) −0.0017 (5) 0.0019 (5)
O7 0.0259 (4) 0.0308 (5) 0.0188 (4) 0.0075 (4) 0.0012 (3) −0.0025 (3)
S8 0.01735 (13) 0.02289 (15) 0.01281 (13) 0.00103 (10) −0.00070 (10) 0.00202 (10)
C9 0.0165 (5) 0.0228 (5) 0.0121 (5) −0.0006 (4) −0.0004 (4) 0.0017 (4)
C10 0.0159 (5) 0.0229 (5) 0.0131 (5) −0.0003 (4) −0.0016 (4) 0.0021 (4)
C11 0.0147 (5) 0.0205 (5) 0.0127 (5) −0.0024 (4) −0.0027 (4) 0.0011 (4)
O12 0.0214 (4) 0.0286 (5) 0.0168 (4) 0.0067 (3) −0.0004 (3) 0.0053 (3)
O13 0.0137 (4) 0.0298 (4) 0.0129 (4) 0.0020 (3) −0.0015 (3) 0.0052 (3)
O14 0.0164 (4) 0.0241 (4) 0.0169 (4) 0.0030 (3) −0.0013 (3) 0.0019 (3)
O15 0.0147 (4) 0.0256 (4) 0.0139 (4) 0.0030 (3) −0.0024 (3) −0.0009 (3)

Geometric parameters (Å, °)

Ni1—O13i 2.0488 (8) C5—H5 0.9500
Ni1—O13 2.0488 (8) C6—H6 0.9500
Ni1—O15i 2.0644 (8) S8—C9 1.8165 (11)
Ni1—O15 2.0644 (8) C9—C10 1.5216 (15)
Ni1—O14 2.0898 (8) C9—H9A 0.9900
Ni1—O14i 2.0898 (8) C9—H9B 0.9900
N1—O7 1.3154 (13) C10—C11 1.5195 (15)
N1—C6 1.3579 (16) C10—H10A 0.9900
N1—C2 1.3687 (14) C10—H10B 0.9900
C2—C3 1.3889 (16) C11—O12 1.2395 (14)
C2—S8 1.7405 (11) C11—O13 1.2818 (13)
C3—C4 1.3823 (17) O14—H14A 0.8142
C3—H3 0.9500 O14—H14B 0.8100
C4—C5 1.3877 (19) O15—H15A 0.8216
C4—H4 0.9500 O15—H15B 0.8268
C5—C6 1.3685 (19)
O13i—Ni1—O13 180.0 C6—C5—H5 120.2
O13i—Ni1—O15i 88.53 (3) C4—C5—H5 120.2
O13—Ni1—O15i 91.47 (3) N1—C6—C5 120.67 (11)
O13i—Ni1—O15 91.47 (3) N1—C6—H6 119.7
O13—Ni1—O15 88.53 (3) C5—C6—H6 119.7
O15i—Ni1—O15 180.0 C2—S8—C9 100.23 (5)
O13i—Ni1—O14 88.50 (3) C10—C9—S8 108.10 (8)
O13—Ni1—O14 91.50 (3) C10—C9—H9A 110.1
O15i—Ni1—O14 90.66 (3) S8—C9—H9A 110.1
O15—Ni1—O14 89.34 (3) C10—C9—H9B 110.1
O13i—Ni1—O14i 91.50 (3) S8—C9—H9B 110.1
O13—Ni1—O14i 88.50 (3) H9A—C9—H9B 108.4
O15i—Ni1—O14i 89.34 (3) C11—C10—C9 111.71 (9)
O15—Ni1—O14i 90.66 (3) C11—C10—H10A 109.3
O14—Ni1—O14i 180.0 C9—C10—H10A 109.3
O7—N1—C6 121.11 (10) C11—C10—H10B 109.3
O7—N1—C2 117.75 (10) C9—C10—H10B 109.3
C6—N1—C2 121.15 (10) H10A—C10—H10B 107.9
N1—C2—C3 118.82 (10) O12—C11—O13 124.27 (10)
N1—C2—S8 112.99 (8) O12—C11—C10 119.85 (10)
C3—C2—S8 128.19 (9) O13—C11—C10 115.87 (9)
C4—C3—C2 120.43 (11) C11—O13—Ni1 126.08 (7)
C4—C3—H3 119.8 Ni1—O14—H14A 98.9
C2—C3—H3 119.8 Ni1—O14—H14B 114.4
C3—C4—C5 119.25 (12) H14A—O14—H14B 107.5
C3—C4—H4 120.4 Ni1—O15—H15A 111.7
C5—C4—H4 120.4 Ni1—O15—H15B 113.8
C6—C5—C4 119.69 (12) H15A—O15—H15B 105.3
O7—N1—C2—C3 −179.71 (10) N1—C2—S8—C9 −171.71 (9)
C6—N1—C2—C3 0.08 (17) C3—C2—S8—C9 7.83 (12)
O7—N1—C2—S8 −0.12 (14) C2—S8—C9—C10 −178.14 (8)
C6—N1—C2—S8 179.66 (10) S8—C9—C10—C11 −178.64 (8)
N1—C2—C3—C4 −0.39 (18) C9—C10—C11—O12 −5.56 (15)
S8—C2—C3—C4 −179.90 (10) C9—C10—C11—O13 175.00 (10)
C2—C3—C4—C5 0.4 (2) O12—C11—O13—Ni1 20.56 (17)
C3—C4—C5—C6 −0.1 (2) C10—C11—O13—Ni1 −160.03 (7)
O7—N1—C6—C5 179.99 (12) O15—Ni1—O13—C11 −120.55 (9)
C2—N1—C6—C5 0.2 (2) O14—Ni1—O13—C11 −31.25 (10)
C4—C5—C6—N1 −0.2 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O14—H14A···O12 0.81 1.84 2.6248 (12) 162
O14—H14B···O15ii 0.81 2.27 2.9517 (12) 142
O14—H14B···O13ii 0.81 2.64 3.2316 (12) 131
O15—H15A···O7iii 0.82 1.83 2.6469 (12) 172
O15—H15B···O13iv 0.83 1.83 2.6570 (11) 172
C4—H4···O12v 0.95 2.48 3.2044 (17) 133
C6—H6···O14vi 0.95 2.46 3.2515 (16) 140
C10—H10B···O12vii 0.99 2.42 3.3910 (14) 167

Symmetry codes: (ii) x−1, y, z; (iii) x−1, y, z+1; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+2, −z; (vi) x+1, y, z−1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2915).

References

  1. Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
  2. Bruker (2008). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  4. Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  5. Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. [PubMed]
  6. Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  7. Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011283/bt2915sup1.cif

e-65-0m470-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011283/bt2915Isup2.hkl

e-65-0m470-Isup2.hkl (128.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES