Abstract
In the centrosymmetric title compound, [Ni(C8H8NO3S)2(H2O)4], the NiII ion, which lies on an inversion centre, is six coordinated by four water molecules and two propionate O atoms from two 2-pyridylsulfanylpropionate N-oxide ligands, forming a slightly distorted octahedral geometry. An intramolecular O—H⋯O hydrogen bond stabilizes the molecular conformation. The crystal packing is consolidated by intermolecular O—H⋯O and C—H⋯O hydrogen bonding.
Related literature
For the biological activities of N-oxide derivatives, see: Bovin et al. (1992 ▶); Katsuyuki et al. (1991 ▶). Leonard et al. (1955 ▶); Lobana & Bhatia (1989 ▶); Symons & West (1985 ▶). For related literature, see: Jebas et al. (2005 ▶); Ravindran et al. (2008 ▶).
Experimental
Crystal data
[Ni(C8H8NO3S)2(H2O)4]
M r = 527.20
Triclinic,
a = 4.8155 (5) Å
b = 8.7650 (10) Å
c = 12.9560 (15) Å
α = 86.400 (2)°
β = 79.501 (2)°
γ = 84.929 (2)°
V = 534.98 (10) Å3
Z = 1
Mo Kα radiation
μ = 1.16 mm−1
T = 173 K
0.35 × 0.28 × 0.07 mm
Data collection
Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008 ▶) T min = 0.405, T max = 0.492 (expected range = 0.759–0.922)
9627 measured reflections
2615 independent reflections
2501 reflections with I > 2σ(I)
R int = 0.017
Refinement
R[F 2 > 2σ(F 2)] = 0.020
wR(F 2) = 0.055
S = 1.05
2615 reflections
142 parameters
H-atom parameters constrained
Δρmax = 0.40 e Å−3
Δρmin = −0.36 e Å−3
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011283/bt2915sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011283/bt2915Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Ni1—O13 | 2.0488 (8) |
| Ni1—O15 | 2.0644 (8) |
| Ni1—O14 | 2.0898 (8) |
| N1—O7 | 1.3154 (13) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O14—H14A⋯O12 | 0.81 | 1.84 | 2.6248 (12) | 162 |
| O14—H14B⋯O15i | 0.81 | 2.27 | 2.9517 (12) | 142 |
| O14—H14B⋯O13i | 0.81 | 2.64 | 3.2316 (12) | 131 |
| O15—H15A⋯O7ii | 0.82 | 1.83 | 2.6469 (12) | 172 |
| O15—H15B⋯O13iii | 0.83 | 1.83 | 2.6570 (11) | 172 |
| C4—H4⋯O12iv | 0.95 | 2.48 | 3.2044 (17) | 133 |
| C6—H6⋯O14v | 0.95 | 2.46 | 3.2515 (16) | 140 |
| C10—H10B⋯O12vi | 0.99 | 2.42 | 3.3910 (14) | 167 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
supplementary crystallographic information
Comment
N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons & West, 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N–oxides bearing a sulfur group in position two display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N–oxides, we have previously reported the crystal structures of N–oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on N–oxide derivatives, we report here the crystal structure of the title compound.
The asymmetric unit comprises of half molecule of the title compound, the other half is symmetry generated [symmetry code: -x + 1,-y + 1,-z + 1]. The NiII ion which lies on an inversion centre is six coordinated by four water molecules and two propianoto oxygen atoms from two 2-pyridylsulfanylpropionato N-oxide ligands forming a slightly distorted octahedral geometry. The bond lengths and angles agree well with the N–oxide derivatives reported earlier (Jebas et al., 2005)
Intramolecular O—H···O hydrogen bonding influences the conformation of the molecule. The crystal packing (Fig. 2) is consolidated by intermolecular O—H···O and C—H···O hydrogen bonding together with intramolecular S···O = 2.6968 (10) Å; O···O = 2.6248 (12) Å, intermolecular O···Oi = 2.6469 (12) Å; O···Oii = 2.6570 (12) Å and O···Oiii = 2.9455 (12) Å [symmetry code: (i):1 + x,y,-1 + z; (ii) 2 - x,1 - y,1 - z; (iii) 1 - x,1 - y,1 - z] short contacts. The molecules are stacked along the a axis.
Experimental
A mixture of the potassium salt of 3(1-oxo-pyridinine- 2-sulfanyl)propionic acid (0.237 g,1 mmol) and Nickel (II) chloride (0.13 g, 0.5 mmol), in water (20 ml) was heated at 333k with continous stirring for one hour. The solution was kept aside for slow evaporation. After two weeks, green colored crystals were obtained.
Refinement
After checking their presence in the Fourier map, all the hydrogen atoms were fixed on the calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å (aromatic), C—H = 0.99 Å (methylene) and O—H = 0.81–0.82 Å (water) with Uiso(C) in the range of 1.2Ueq(C) and 1.5Ueq(O).
Figures
Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Symmetry code: -x + 1,-y + 1,-z + 1.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis. Molecules are stacked along the a axis.
Crystal data
| [Ni(C8H8NO3S)2(H2O)4] | Z = 1 |
| Mr = 527.20 | F(000) = 274 |
| Triclinic, P1 | Dx = 1.636 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
| a = 4.8155 (5) Å | Cell parameters from 6946 reflections |
| b = 8.765 (1) Å | θ = 2.3–28.2° |
| c = 12.9560 (15) Å | µ = 1.16 mm−1 |
| α = 86.400 (2)° | T = 173 K |
| β = 79.501 (2)° | Plate, green |
| γ = 84.929 (2)° | 0.35 × 0.28 × 0.07 mm |
| V = 534.98 (10) Å3 |
Data collection
| Bruker SMART APEXII CCD diffractometer | 2615 independent reflections |
| Radiation source: sealed Tube | 2501 reflections with I > 2σ(I) |
| graphite | Rint = 0.017 |
| CCD scan | θmax = 28.2°, θmin = 1.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −6→6 |
| Tmin = 0.405, Tmax = 0.492 | k = −11→11 |
| 9627 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.055 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0294P)2 + 0.2035P] where P = (Fo2 + 2Fc2)/3 |
| 2615 reflections | (Δ/σ)max < 0.001 |
| 142 parameters | Δρmax = 0.40 e Å−3 |
| 0 restraints | Δρmin = −0.36 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01405 (6) | |
| N1 | 1.2267 (2) | 0.77325 (12) | −0.20598 (8) | 0.0197 (2) | |
| C2 | 1.0696 (2) | 0.79224 (13) | −0.10776 (8) | 0.0167 (2) | |
| C3 | 0.8347 (3) | 0.89789 (14) | −0.09608 (9) | 0.0212 (2) | |
| H3 | 0.7229 | 0.9119 | −0.0285 | 0.025* | |
| C4 | 0.7627 (3) | 0.98279 (15) | −0.18222 (10) | 0.0254 (3) | |
| H4 | 0.6027 | 1.0555 | −0.1741 | 0.031* | |
| C5 | 0.9266 (3) | 0.96061 (16) | −0.28069 (10) | 0.0291 (3) | |
| H5 | 0.8794 | 1.0180 | −0.3406 | 0.035* | |
| C6 | 1.1567 (3) | 0.85564 (16) | −0.29110 (10) | 0.0274 (3) | |
| H6 | 1.2685 | 0.8403 | −0.3586 | 0.033* | |
| O7 | 1.44740 (19) | 0.67209 (11) | −0.21521 (7) | 0.0264 (2) | |
| S8 | 1.19805 (6) | 0.67388 (3) | −0.01121 (2) | 0.01821 (7) | |
| C9 | 0.9142 (2) | 0.70873 (14) | 0.09994 (8) | 0.0176 (2) | |
| H9A | 0.8880 | 0.8194 | 0.1136 | 0.021* | |
| H9B | 0.7344 | 0.6765 | 0.0848 | 0.021* | |
| C10 | 0.9942 (2) | 0.61698 (13) | 0.19529 (8) | 0.0177 (2) | |
| H10A | 1.0268 | 0.5071 | 0.1796 | 0.021* | |
| H10B | 1.1730 | 0.6511 | 0.2100 | 0.021* | |
| C11 | 0.7643 (2) | 0.63642 (13) | 0.29187 (8) | 0.0159 (2) | |
| O12 | 0.55540 (18) | 0.72858 (11) | 0.28796 (7) | 0.02341 (18) | |
| O13 | 0.80467 (17) | 0.55410 (10) | 0.37393 (6) | 0.01937 (17) | |
| O14 | 0.26378 (17) | 0.70791 (10) | 0.47964 (6) | 0.01973 (17) | |
| H14A | 0.3264 | 0.7271 | 0.4179 | 0.030* | |
| H14B | 0.0952 | 0.7007 | 0.4849 | 0.030* | |
| O15 | 0.71999 (16) | 0.60521 (10) | 0.59458 (6) | 0.01836 (17) | |
| H15A | 0.6207 | 0.6252 | 0.6514 | 0.028* | |
| H15B | 0.8596 | 0.5522 | 0.6092 | 0.028* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ni1 | 0.01095 (10) | 0.01935 (11) | 0.01075 (10) | 0.00213 (7) | −0.00158 (7) | 0.00208 (7) |
| N1 | 0.0229 (5) | 0.0205 (5) | 0.0145 (4) | −0.0001 (4) | −0.0011 (4) | −0.0011 (4) |
| C2 | 0.0191 (5) | 0.0181 (5) | 0.0127 (5) | −0.0037 (4) | −0.0019 (4) | −0.0001 (4) |
| C3 | 0.0223 (5) | 0.0220 (6) | 0.0178 (5) | 0.0001 (4) | −0.0012 (4) | 0.0002 (4) |
| C4 | 0.0277 (6) | 0.0222 (6) | 0.0259 (6) | 0.0029 (5) | −0.0068 (5) | 0.0018 (5) |
| C5 | 0.0399 (7) | 0.0273 (6) | 0.0199 (6) | 0.0009 (5) | −0.0090 (5) | 0.0055 (5) |
| C6 | 0.0377 (7) | 0.0291 (6) | 0.0135 (5) | 0.0006 (5) | −0.0017 (5) | 0.0019 (5) |
| O7 | 0.0259 (4) | 0.0308 (5) | 0.0188 (4) | 0.0075 (4) | 0.0012 (3) | −0.0025 (3) |
| S8 | 0.01735 (13) | 0.02289 (15) | 0.01281 (13) | 0.00103 (10) | −0.00070 (10) | 0.00202 (10) |
| C9 | 0.0165 (5) | 0.0228 (5) | 0.0121 (5) | −0.0006 (4) | −0.0004 (4) | 0.0017 (4) |
| C10 | 0.0159 (5) | 0.0229 (5) | 0.0131 (5) | −0.0003 (4) | −0.0016 (4) | 0.0021 (4) |
| C11 | 0.0147 (5) | 0.0205 (5) | 0.0127 (5) | −0.0024 (4) | −0.0027 (4) | 0.0011 (4) |
| O12 | 0.0214 (4) | 0.0286 (5) | 0.0168 (4) | 0.0067 (3) | −0.0004 (3) | 0.0053 (3) |
| O13 | 0.0137 (4) | 0.0298 (4) | 0.0129 (4) | 0.0020 (3) | −0.0015 (3) | 0.0052 (3) |
| O14 | 0.0164 (4) | 0.0241 (4) | 0.0169 (4) | 0.0030 (3) | −0.0013 (3) | 0.0019 (3) |
| O15 | 0.0147 (4) | 0.0256 (4) | 0.0139 (4) | 0.0030 (3) | −0.0024 (3) | −0.0009 (3) |
Geometric parameters (Å, °)
| Ni1—O13i | 2.0488 (8) | C5—H5 | 0.9500 |
| Ni1—O13 | 2.0488 (8) | C6—H6 | 0.9500 |
| Ni1—O15i | 2.0644 (8) | S8—C9 | 1.8165 (11) |
| Ni1—O15 | 2.0644 (8) | C9—C10 | 1.5216 (15) |
| Ni1—O14 | 2.0898 (8) | C9—H9A | 0.9900 |
| Ni1—O14i | 2.0898 (8) | C9—H9B | 0.9900 |
| N1—O7 | 1.3154 (13) | C10—C11 | 1.5195 (15) |
| N1—C6 | 1.3579 (16) | C10—H10A | 0.9900 |
| N1—C2 | 1.3687 (14) | C10—H10B | 0.9900 |
| C2—C3 | 1.3889 (16) | C11—O12 | 1.2395 (14) |
| C2—S8 | 1.7405 (11) | C11—O13 | 1.2818 (13) |
| C3—C4 | 1.3823 (17) | O14—H14A | 0.8142 |
| C3—H3 | 0.9500 | O14—H14B | 0.8100 |
| C4—C5 | 1.3877 (19) | O15—H15A | 0.8216 |
| C4—H4 | 0.9500 | O15—H15B | 0.8268 |
| C5—C6 | 1.3685 (19) | ||
| O13i—Ni1—O13 | 180.0 | C6—C5—H5 | 120.2 |
| O13i—Ni1—O15i | 88.53 (3) | C4—C5—H5 | 120.2 |
| O13—Ni1—O15i | 91.47 (3) | N1—C6—C5 | 120.67 (11) |
| O13i—Ni1—O15 | 91.47 (3) | N1—C6—H6 | 119.7 |
| O13—Ni1—O15 | 88.53 (3) | C5—C6—H6 | 119.7 |
| O15i—Ni1—O15 | 180.0 | C2—S8—C9 | 100.23 (5) |
| O13i—Ni1—O14 | 88.50 (3) | C10—C9—S8 | 108.10 (8) |
| O13—Ni1—O14 | 91.50 (3) | C10—C9—H9A | 110.1 |
| O15i—Ni1—O14 | 90.66 (3) | S8—C9—H9A | 110.1 |
| O15—Ni1—O14 | 89.34 (3) | C10—C9—H9B | 110.1 |
| O13i—Ni1—O14i | 91.50 (3) | S8—C9—H9B | 110.1 |
| O13—Ni1—O14i | 88.50 (3) | H9A—C9—H9B | 108.4 |
| O15i—Ni1—O14i | 89.34 (3) | C11—C10—C9 | 111.71 (9) |
| O15—Ni1—O14i | 90.66 (3) | C11—C10—H10A | 109.3 |
| O14—Ni1—O14i | 180.0 | C9—C10—H10A | 109.3 |
| O7—N1—C6 | 121.11 (10) | C11—C10—H10B | 109.3 |
| O7—N1—C2 | 117.75 (10) | C9—C10—H10B | 109.3 |
| C6—N1—C2 | 121.15 (10) | H10A—C10—H10B | 107.9 |
| N1—C2—C3 | 118.82 (10) | O12—C11—O13 | 124.27 (10) |
| N1—C2—S8 | 112.99 (8) | O12—C11—C10 | 119.85 (10) |
| C3—C2—S8 | 128.19 (9) | O13—C11—C10 | 115.87 (9) |
| C4—C3—C2 | 120.43 (11) | C11—O13—Ni1 | 126.08 (7) |
| C4—C3—H3 | 119.8 | Ni1—O14—H14A | 98.9 |
| C2—C3—H3 | 119.8 | Ni1—O14—H14B | 114.4 |
| C3—C4—C5 | 119.25 (12) | H14A—O14—H14B | 107.5 |
| C3—C4—H4 | 120.4 | Ni1—O15—H15A | 111.7 |
| C5—C4—H4 | 120.4 | Ni1—O15—H15B | 113.8 |
| C6—C5—C4 | 119.69 (12) | H15A—O15—H15B | 105.3 |
| O7—N1—C2—C3 | −179.71 (10) | N1—C2—S8—C9 | −171.71 (9) |
| C6—N1—C2—C3 | 0.08 (17) | C3—C2—S8—C9 | 7.83 (12) |
| O7—N1—C2—S8 | −0.12 (14) | C2—S8—C9—C10 | −178.14 (8) |
| C6—N1—C2—S8 | 179.66 (10) | S8—C9—C10—C11 | −178.64 (8) |
| N1—C2—C3—C4 | −0.39 (18) | C9—C10—C11—O12 | −5.56 (15) |
| S8—C2—C3—C4 | −179.90 (10) | C9—C10—C11—O13 | 175.00 (10) |
| C2—C3—C4—C5 | 0.4 (2) | O12—C11—O13—Ni1 | 20.56 (17) |
| C3—C4—C5—C6 | −0.1 (2) | C10—C11—O13—Ni1 | −160.03 (7) |
| O7—N1—C6—C5 | 179.99 (12) | O15—Ni1—O13—C11 | −120.55 (9) |
| C2—N1—C6—C5 | 0.2 (2) | O14—Ni1—O13—C11 | −31.25 (10) |
| C4—C5—C6—N1 | −0.2 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O14—H14A···O12 | 0.81 | 1.84 | 2.6248 (12) | 162 |
| O14—H14B···O15ii | 0.81 | 2.27 | 2.9517 (12) | 142 |
| O14—H14B···O13ii | 0.81 | 2.64 | 3.2316 (12) | 131 |
| O15—H15A···O7iii | 0.82 | 1.83 | 2.6469 (12) | 172 |
| O15—H15B···O13iv | 0.83 | 1.83 | 2.6570 (11) | 172 |
| C4—H4···O12v | 0.95 | 2.48 | 3.2044 (17) | 133 |
| C6—H6···O14vi | 0.95 | 2.46 | 3.2515 (16) | 140 |
| C10—H10B···O12vii | 0.99 | 2.42 | 3.3910 (14) | 167 |
Symmetry codes: (ii) x−1, y, z; (iii) x−1, y, z+1; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+2, −z; (vi) x+1, y, z−1; (vii) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2915).
References
- Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
- Bruker (2008). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
- Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
- Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
- Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. [PubMed]
- Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
- Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011283/bt2915sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011283/bt2915Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


