Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):m361–m362. doi: 10.1107/S1600536809005674

Poly[bis­(methanol-κO)tris­(μ-pyrimidine-κ2 N:N′)tetra­kis(thio­cyanato-κN)dinickel(II)]

Mario Wriedt a, Sina Sellmer a, Inke Jess a, Christian Näther a,*
PMCID: PMC2968860  PMID: 21582319

Abstract

In the crystal structure of the title compound, [Ni2(NCS)4(C4H4N2)3(CH3OH)2]n, each nickel(II) cation is coordinated by three N-bonded pyrimidine ligands, two N-bonded thio­cyanate anions and one O-bonded methanol mol­ecule in a distorted octa­hedral environment. The asymmetric unit consists of one nickel cation, two thio­cyanate anions and one methanol mol­ecule in general positions, as well as one pyrimidine ligand located around a twofold rotation axis. The crystal structure consists of μ-N:N′ pyrimidine-bridged zigzag-like nickel thio­cyanate chains; these are further linked by μ-N:N-bridging pyrimidine ligands into layers which are stacked perpendicular to the b axis. The layers are connected via weak O—H⋯S hydrogen bonding.

Related literature

For related pyrimidine structures, see: Lloret et al. (1998); Näther et al. (2007); Näther & Greve (2003). For general background, see: Wriedt et al. (2008) and literature cited therein.graphic file with name e-65-0m361-scheme1.jpg

Experimental

Crystal data

  • [Ni2(NCS)4(C4H4N2)3(CH4O)2]

  • M r = 654.10

  • Orthorhombic, Inline graphic

  • a = 20.0624 (4) Å

  • b = 32.5018 (6) Å

  • c = 8.0268 (2) Å

  • V = 5233.99 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 80 K

  • 0.19 × 0.09 × 0.03 mm

Data collection

  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.813, T max = 0.936

  • 26228 measured reflections

  • 3743 independent reflections

  • 3659 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.048

  • S = 1.09

  • 3743 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1746 Friedel pairs

  • Flack parameter: 0.092 (7)

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005674/si2156sup1.cif

e-65-0m361-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005674/si2156Isup2.hkl

e-65-0m361-Isup2.hkl (183.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—N31 2.0334 (14)
Ni1—N21 2.0376 (13)
Ni1—O41 2.1053 (12)
Ni1—N11 2.1118 (13)
Ni1—N2i 2.1200 (13)
Ni1—N1 2.1244 (13)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H1O4⋯S21ii 0.80 (3) 2.50 (3) 3.2474 (14) 154 (2)

Symmetry code: (ii) Inline graphic.

Acknowledgments

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and we thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facility.

supplementary crystallographic information

Comment

Recently, we have shown that new ligand deficient coordination polymers with interesting magnetic properties can be prepared by thermal decomposition of suitable ligand rich precursor compounds (Näther & Greve, 2003; Wriedt et al., 2008; and Näther et al., 2007). In our ongoing investigation on the synthesis, structures and properties of new coordination polymers based on paramagnetic metal pseudohalides and N-donor ligands (Lloret et al. 1998), we have reacted nickel(II) thiocyanate with pyrimidine in methanol. In this reaction single crystals of the title compound has been formed.

The 2:3 title compound [Ni(SCN)2(pyrimidine)3*2MeOH]n (Fig. 1) represents a two-dimensional coordination polymer, which consists of µ-1,3-(N,N) pyrimidine bridged zigzag like nickel thiocyanates chains, which are further linked by µ-1,3-(N,N) bridged pyrimidine ligands into layers (Fig. 2 and 3). Within each layer the nickel cations are bridged by three µ-1,3-(N,N') pyrimidine ligands and are further terminal coordinated by two N-bonded thiocyanate anions and one O-bonded methanol molecule. Thus, each nickel cation is octahedrally coordinated. The asymmetric unit consists of one nickel cation, two thiocyanate anions and one methanol molecule in general position as well as one pyrimidine ligand located around a twofold rotation axis. The Ni—NCS distances amount to 2.0334 (14) and 2.0376 (13) Å and the Ni—Npyrimidine distances range from 2.1118 (13) to 2.1244 (13) Å as well as the angles around the iron cations range between 86.62 (5) and 177.66 (5)° (Tab. 1). The shortest intra- and interchain Ni···Ni distances amount to 5.9470 (1) and 8.4023 (1) Å, respectively.

Experimental

Ni(SCN)2, pyrimidine and methanol were obtained from Alfa Aesar. 0.125 mmol (21.5 mg) Ni(SCN)2, 0.25 mmol (20.0 mg) pyrimidine and 0.5 ml methanol were transfered in a closed test-tube. The mixture was heated at 120 °C for three days. After cooling green needle-shaped single crystals of the title compound were obtained in a heterogenous mixture.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å.

The absolute structure was determined on the bases of 1746 Friedel pairs. The crystal was racemically twinned and therefore a twin refinement was performed (BASF: 0.09169 with e.s.d.: 0.00739).

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y+1/2, z+1/2; (ii) -x+3/2, -y+1/2, z.]

Fig. 2.

Fig. 2.

The crystal structure of the title compound with view along the b axis.

Fig. 3.

Fig. 3.

The crystal structure of the title compound with view along the c axis.

Crystal data

[Ni2(NCS)4(C4H4N2)3(CH4O)2] F(000) = 2672
Mr = 654.10 Dx = 1.660 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 26829 reflections
a = 20.0624 (4) Å θ = 2.4–30.2°
b = 32.5018 (6) Å µ = 1.80 mm1
c = 8.0268 (2) Å T = 80 K
V = 5233.99 (19) Å3 Needle, green
Z = 8 0.19 × 0.09 × 0.03 mm

Data collection

Stoe IPDS-2 diffractometer 3743 independent reflections
Radiation source: fine-focus sealed tube 3659 reflections with I > 2σ(I)
graphite Rint = 0.043
ω scans θmax = 29.8°, θmin = 2.4°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −28→28
Tmin = 0.813, Tmax = 0.936 k = −45→45
26228 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0258P)2 + 3.6623P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
3743 reflections Δρmax = 0.34 e Å3
170 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack (1983), 1746 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.0917 (74)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.606548 (9) 0.227000 (5) 0.78384 (2) 0.01902 (4)
N1 0.55175 (7) 0.27249 (4) 0.65206 (17) 0.0215 (2)
N2 0.47332 (7) 0.29025 (4) 0.44204 (17) 0.0223 (2)
C1 0.50701 (7) 0.26330 (4) 0.5344 (2) 0.0221 (2)
H1 0.4985 0.2350 0.5149 0.026*
C2 0.48569 (8) 0.33035 (5) 0.4691 (2) 0.0254 (3)
H2 0.4634 0.3505 0.4036 0.030*
C3 0.52997 (9) 0.34281 (5) 0.5898 (2) 0.0270 (3)
H3 0.5379 0.3712 0.6103 0.032*
C4 0.56250 (9) 0.31286 (5) 0.6799 (2) 0.0256 (3)
H4 0.5933 0.3208 0.7638 0.031*
N11 0.69268 (6) 0.24119 (4) 0.64396 (16) 0.0216 (2)
C11 0.7500 0.2500 0.7204 (3) 0.0221 (4)
H11 0.7500 0.2500 0.8388 0.027*
C13 0.7500 0.2500 0.3882 (3) 0.0322 (5)
H13 0.7500 0.2500 0.2698 0.039*
C14 0.69298 (8) 0.24151 (6) 0.4778 (2) 0.0275 (3)
H14 0.6528 0.2357 0.4196 0.033*
N21 0.58003 (7) 0.18291 (4) 0.61601 (18) 0.0257 (3)
C21 0.55990 (7) 0.15388 (4) 0.5486 (2) 0.0223 (3)
S21 0.53215 (3) 0.113396 (13) 0.45037 (6) 0.03346 (9)
N31 0.63443 (7) 0.26781 (4) 0.96274 (18) 0.0249 (3)
C31 0.63460 (8) 0.29113 (5) 1.07238 (19) 0.0228 (3)
S31 0.63423 (3) 0.323347 (15) 1.22718 (6) 0.03821 (11)
O41 0.66278 (7) 0.18126 (4) 0.90523 (16) 0.0300 (3)
C41 0.67557 (12) 0.17680 (6) 1.0780 (3) 0.0418 (5)
H41A 0.6591 0.2011 1.1375 0.063*
H41B 0.7237 0.1740 1.0962 0.063*
H41C 0.6528 0.1522 1.1198 0.063*
H1O4 0.6830 (14) 0.1640 (8) 0.854 (3) 0.047 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01457 (7) 0.02028 (8) 0.02220 (8) −0.00051 (7) −0.00029 (7) −0.00255 (7)
N1 0.0171 (6) 0.0219 (6) 0.0254 (6) −0.0014 (4) −0.0012 (4) 0.0006 (5)
N2 0.0169 (6) 0.0217 (5) 0.0282 (6) −0.0005 (5) −0.0006 (5) 0.0003 (5)
C1 0.0175 (6) 0.0196 (5) 0.0291 (6) −0.0006 (4) −0.0011 (6) −0.0018 (6)
C2 0.0253 (8) 0.0222 (6) 0.0287 (7) 0.0000 (5) 0.0014 (6) 0.0019 (6)
C3 0.0329 (9) 0.0193 (6) 0.0287 (7) −0.0039 (6) 0.0002 (6) −0.0016 (5)
C4 0.0276 (8) 0.0239 (6) 0.0254 (7) −0.0048 (6) −0.0021 (6) −0.0014 (5)
N11 0.0165 (6) 0.0253 (6) 0.0231 (6) −0.0003 (5) 0.0005 (5) −0.0011 (4)
C11 0.0173 (9) 0.0262 (9) 0.0230 (9) 0.0002 (7) 0.000 0.000
C13 0.0257 (12) 0.0499 (15) 0.0208 (10) −0.0044 (10) 0.000 0.000
C14 0.0202 (7) 0.0376 (8) 0.0247 (7) −0.0016 (6) −0.0022 (6) −0.0019 (6)
N21 0.0230 (6) 0.0245 (6) 0.0296 (7) −0.0003 (5) −0.0028 (5) −0.0053 (5)
C21 0.0183 (6) 0.0246 (6) 0.0239 (6) 0.0029 (5) 0.0015 (5) 0.0018 (5)
S21 0.0355 (2) 0.02680 (18) 0.0381 (2) −0.00436 (16) −0.00331 (18) −0.00964 (16)
N31 0.0222 (6) 0.0263 (6) 0.0262 (6) −0.0024 (5) 0.0006 (5) −0.0035 (5)
C31 0.0177 (6) 0.0241 (6) 0.0265 (8) −0.0009 (5) 0.0005 (5) 0.0012 (5)
S31 0.0431 (3) 0.0360 (2) 0.0355 (2) −0.00220 (19) 0.00501 (19) −0.01510 (18)
O41 0.0285 (6) 0.0306 (6) 0.0308 (6) 0.0096 (5) −0.0014 (5) 0.0020 (5)
C41 0.0516 (12) 0.0336 (9) 0.0403 (10) 0.0021 (8) −0.0217 (9) 0.0030 (7)

Geometric parameters (Å, °)

Ni1—N31 2.0334 (14) N11—C14 1.334 (2)
Ni1—N21 2.0376 (13) N11—C11 1.3346 (16)
Ni1—O41 2.1053 (12) C11—N11iii 1.3346 (16)
Ni1—N11 2.1118 (13) C11—H11 0.9500
Ni1—N2i 2.1200 (13) C13—C14 1.379 (2)
Ni1—N1 2.1244 (13) C13—C14iii 1.379 (2)
N1—C1 1.337 (2) C13—H13 0.9500
N1—C4 1.348 (2) C14—H14 0.9500
N2—C1 1.332 (2) N21—C21 1.160 (2)
N2—C2 1.3444 (19) C21—S21 1.6320 (16)
N2—Ni1ii 2.1200 (13) N31—C31 1.161 (2)
C1—H1 0.9500 C31—S31 1.6250 (16)
C2—C3 1.376 (2) O41—C41 1.418 (2)
C2—H2 0.9500 O41—H1O4 0.80 (3)
C3—C4 1.377 (2) C41—H41A 0.9800
C3—H3 0.9500 C41—H41B 0.9800
C4—H4 0.9500 C41—H41C 0.9800
N31—Ni1—N21 176.02 (6) C4—C3—H3 121.0
N31—Ni1—O41 89.22 (6) N1—C4—C3 121.66 (15)
N21—Ni1—O41 87.09 (5) N1—C4—H4 119.2
N31—Ni1—N11 90.45 (5) C3—C4—H4 119.2
N21—Ni1—N11 90.90 (6) C14—N11—C11 117.02 (16)
O41—Ni1—N11 87.81 (5) C14—N11—Ni1 122.48 (11)
N31—Ni1—N2i 87.56 (5) C11—N11—Ni1 120.49 (12)
N21—Ni1—N2i 90.73 (5) N11—C11—N11iii 125.2 (2)
O41—Ni1—N2i 86.62 (5) N11—C11—H11 117.4
N11—Ni1—N2i 174.11 (5) N11iii—C11—H11 117.4
N31—Ni1—N1 92.29 (5) C14—C13—C14iii 117.1 (2)
N21—Ni1—N1 91.44 (5) C14—C13—H13 121.4
O41—Ni1—N1 177.66 (5) C14iii—C13—H13 121.4
N11—Ni1—N1 90.39 (5) N11—C14—C13 121.79 (16)
N2i—Ni1—N1 95.23 (5) N11—C14—H14 119.1
C1—N1—C4 116.23 (14) C13—C14—H14 119.1
C1—N1—Ni1 122.94 (10) C21—N21—Ni1 166.20 (14)
C4—N1—Ni1 120.79 (11) N21—C21—S21 178.86 (16)
C1—N2—C2 117.01 (14) C31—N31—Ni1 164.08 (13)
C1—N2—Ni1ii 122.90 (10) N31—C31—S31 179.26 (16)
C2—N2—Ni1ii 119.50 (11) C41—O41—Ni1 128.45 (12)
N2—C1—N1 125.96 (13) C41—O41—H1O4 110 (2)
N2—C1—H1 117.0 Ni1—O41—H1O4 121.7 (19)
N1—C1—H1 117.0 O41—C41—H41A 109.5
N2—C2—C3 121.22 (15) O41—C41—H41B 109.5
N2—C2—H2 119.4 H41A—C41—H41B 109.5
C3—C2—H2 119.4 O41—C41—H41C 109.5
C2—C3—C4 117.90 (14) H41A—C41—H41C 109.5
C2—C3—H3 121.0 H41B—C41—H41C 109.5

Symmetry codes: (i) −x+1, −y+1/2, z+1/2; (ii) −x+1, −y+1/2, z−1/2; (iii) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O41—H1O4···S21iv 0.80 (3) 2.50 (3) 3.2474 (14) 154 (2)

Symmetry codes: (iv) x+1/4, −y+1/4, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2156).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Lloret, F., Munno, G. D., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. Engl.37, 135–138.
  3. Näther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353–5359.
  4. Näther, C. & Greve, J. (2003). J. Solid State Chem.176, 259–265.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  7. Wriedt, M., Jess, I. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 363–372.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005674/si2156sup1.cif

e-65-0m361-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005674/si2156Isup2.hkl

e-65-0m361-Isup2.hkl (183.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES