Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):o743. doi: 10.1107/S1600536809008198

(1′S,2R,3R)-(−)-2-Hydr­oxy-3-morpholino-3-phenyl-N-(1′-phenyl­ethyl)propion­amide

Angel Mendoza a,*, David M Aparicio a, Joel L Terán a, Dino Gnecco a, Jorge R Juárez a
PMCID: PMC2968871  PMID: 21582476

Abstract

In the title compound, C21H26N2O3, the morpholine ring has a chair conformation and the dihedral angle between the two phenyl rings is 59.0 (3)°. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds, generating a ribbon structure along the a axis. An intra­molecular N—H⋯O contact is also present.

Related literature

For general background, see: Barbaro et al. (1992); Szymanski et al. (2006); Sheppard et al. (2004); Chen et al. (1996); Concellón et al. (2003a ,b ); Martín et al. (2004). For related structures, see: Romero et al. (2005a ,b ). For ring conformation analysis, see: Cremer & Pople (1975).graphic file with name e-65-0o743-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O3

  • M r = 354.44

  • Orthorhombic, Inline graphic

  • a = 6.0010 (17) Å

  • b = 15.659 (3) Å

  • c = 20.746 (4) Å

  • V = 1949.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.72 × 0.28 × 0.16 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: none

  • 3964 measured reflections

  • 2959 independent reflections

  • 1116 reflections with I > 2σ(I)

  • R int = 0.055

  • 3 standard reflections every 97 reflections intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.163

  • S = 0.89

  • 2959 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008198/is2398sup1.cif

e-65-0o743-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008198/is2398Isup2.hkl

e-65-0o743-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 1.00 (7) 1.92 (7) 2.569 (5) 120 (5)
O1—H1O⋯O2i 0.98 (8) 1.80 (8) 2.753 (4) 163 (7)

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge financial support under scholarship DMAS No. 169011 and CONACyT project No. 83185. Special thanks go to Dr Marcos Flores (USAI-FQ-UNAM) for useful comments.

supplementary crystallographic information

Comment

The stereoselective synthesis of α-hydroxyamides (Barbaro et al., 1992; Szymanski et al., 2006) is an important area in asymmetric synthesis because these kinds of intermediates exhibit a great value as synthetic building block in the synthesis of pharmaceutical, agriculture and medicinal compounds (Sheppard et al., 2004; Chen et al., 1996). Numerous methods have been development through the last 10 years. One of the most relevant methodologies is the opening reaction of epoxyamides (Concellón et al., 2003a,b; Martín et al., 2004). In this way, we show herein the regiospecific ring opening reaction of epoxyamide derived from (S)-(-)-phenyl ethyl amine (Scheme 1). Related structures including (S)-(-)-phenyl ethyl amine with different substituents has been previously reported (Romero et al., 2005a,b).

In the present paper, we report the structure of title compound, (I), which shows a single asymmetric unit with two aromatic rings. The morpholine ring shows an almost perfect chair conformation with a puckering parameters (Cremer & Pople, 1975) (O3—C2—C1—N2—C4—C3) Q = 0.572 (4) Å, θ2 = 3.6° (4), φ2 =343° (10), q2 = 0.026 (4) Å and q3 = 0.571 (4) Å. In the crystal structure, the molecules are linked by O—H···O hydrogen bonds (Table 1), generating a ribbon structure along the a axis.

Experimental

The compound (I) was obtained by trans-diastereoisomeric mixture of epoxyamide in anhydrous EtOH. Then, 1.1 equivalents of morpholine were added. The reaction was stirred over night. Finally, the resultant amino alcohol mixture was separate by column chromatography (AcOEt: Petroleum Ether). The absolute configuration of (1'S, 2R, 3R)-(-)-2-hydroxy-3-morpholin-4-yl-3 -phenyl-N-(1'-phenyl-ethyl)-propionamide was established by the structure determination of a (S)-(-)-phenyl ethyl amine of known absolute configuration of starting material [C8 in compound (I)]. The H1 NMR experiment shows only one disteromeric compound.

Refinement

H atoms bonded to N and O atoms and all optically relevant were located in a difference map and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq for N and C—H and Uiso(H) = 1.5Ueq for O atoms. H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the absence of significant anomalous scattering effects, Friedel pairs were merged and the absolute configuration was assigned on the base of synthetic procedure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of the title compound, showing molecules connected by O—H···O hydrogen bonds (dashed lines).

Crystal data

C21H26N2O3 Dx = 1.208 Mg m3
Mr = 354.44 Melting point: 431 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 30 reflections
a = 6.0010 (17) Å θ = 3.9–23.9°
b = 15.659 (3) Å µ = 0.08 mm1
c = 20.746 (4) Å T = 293 K
V = 1949.5 (8) Å3 Prism, colorless
Z = 4 0.72 × 0.28 × 0.16 mm
F(000) = 760

Data collection

Bruker P4 diffractometer Rint = 0.055
Radiation source: fine-focus sealed tube θmax = 29.0°, θmin = 1.6°
graphite h = −1→8
2θ/ω scans k = −1→21
3964 measured reflections l = −1→28
2959 independent reflections 3 standard reflections every 97 reflections
1116 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0711P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89 (Δ/σ)max < 0.001
2959 reflections Δρmax = 0.24 e Å3
251 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1563 (5) 0.92034 (19) 0.75127 (13) 0.0567 (8)
N2 −0.1559 (5) 0.90373 (19) 0.60796 (14) 0.0464 (8)
O2 0.4127 (5) 0.96834 (18) 0.72379 (13) 0.0598 (8)
N1 0.2201 (6) 0.9177 (2) 0.81024 (16) 0.0516 (9)
C10 0.0914 (6) 0.8018 (2) 0.66365 (17) 0.0447 (9)
C7 0.2354 (6) 0.9439 (2) 0.74924 (19) 0.0445 (9)
O3 −0.3564 (6) 0.9556 (2) 0.48787 (14) 0.0770 (10)
C5 0.0430 (7) 0.8947 (2) 0.64872 (18) 0.0449 (9)
C6 0.0197 (6) 0.9474 (2) 0.71116 (18) 0.0434 (9)
C4 −0.2007 (7) 0.9933 (2) 0.5920 (2) 0.0554 (11)
H4A −0.0697 1.0183 0.5721 0.066*
H4B −0.2322 1.0248 0.6312 0.066*
C8 0.3993 (7) 0.9216 (3) 0.8565 (2) 0.0552 (11)
C15 0.3024 (8) 0.7691 (2) 0.65361 (19) 0.0535 (10)
H15 0.4145 0.8045 0.6380 0.064*
C16 0.5180 (7) 0.8364 (3) 0.86521 (19) 0.0558 (11)
C11 −0.0702 (7) 0.7484 (3) 0.6885 (2) 0.0610 (11)
H11 −0.2125 0.7695 0.6964 0.073*
C17 0.4526 (9) 0.7626 (3) 0.8349 (2) 0.0703 (13)
H17 0.3292 0.7635 0.8078 0.084*
C3 −0.3969 (8) 1.0009 (3) 0.5463 (2) 0.0676 (13)
H3A −0.5294 0.9782 0.5669 0.081*
H3B −0.4235 1.0607 0.5367 0.081*
C1 −0.1284 (8) 0.8570 (3) 0.54712 (19) 0.0637 (12)
H1A −0.1097 0.7967 0.5564 0.076*
H1B 0.0055 0.8768 0.5257 0.076*
C2 −0.3229 (9) 0.8683 (3) 0.5030 (2) 0.0765 (15)
H2A −0.2973 0.8365 0.4635 0.092*
H2B −0.4559 0.8457 0.5233 0.092*
C13 0.1855 (9) 0.6310 (3) 0.6898 (2) 0.0699 (14)
H13 0.2158 0.5736 0.6973 0.084*
C14 0.3492 (8) 0.6836 (3) 0.6666 (2) 0.0638 (12)
H14 0.4918 0.6623 0.6594 0.077*
C21 0.7048 (9) 0.8339 (4) 0.9047 (3) 0.0896 (17)
H21 0.7533 0.8835 0.9250 0.107*
C9 0.3070 (9) 0.9542 (4) 0.9206 (2) 0.0938 (18)
H9A 0.2331 1.0078 0.9138 0.141*
H9B 0.4271 0.9618 0.9506 0.141*
H9C 0.2027 0.9135 0.9375 0.141*
C12 −0.0219 (9) 0.6627 (3) 0.7018 (3) 0.0742 (14)
H12 −0.1316 0.6274 0.7189 0.089*
C18 0.5674 (12) 0.6867 (3) 0.8440 (3) 0.0958 (18)
H18 0.5207 0.6370 0.8236 0.115*
C19 0.7512 (13) 0.6857 (5) 0.8837 (4) 0.119 (2)
H19 0.8297 0.6351 0.8899 0.143*
C20 0.8184 (12) 0.7586 (5) 0.9141 (3) 0.122 (2)
H20 0.9418 0.7574 0.9412 0.147*
H1O −0.307 (14) 0.929 (5) 0.735 (4) 0.184*
H1N 0.059 (12) 0.906 (4) 0.819 (3) 0.147*
H5 0.180 (12) 0.915 (4) 0.627 (3) 0.147*
H6 −0.004 (11) 1.009 (4) 0.697 (3) 0.147*
H8 0.535 (12) 0.960 (4) 0.839 (3) 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0370 (14) 0.0800 (19) 0.0531 (15) 0.0034 (16) 0.0045 (14) 0.0008 (15)
N2 0.0476 (19) 0.0465 (17) 0.0450 (16) 0.0034 (17) −0.0023 (16) 0.0024 (14)
O2 0.0429 (17) 0.0697 (18) 0.0668 (18) −0.0070 (15) 0.0011 (15) 0.0061 (15)
N1 0.0388 (18) 0.065 (2) 0.0507 (19) 0.0006 (18) −0.0067 (17) −0.0002 (17)
C10 0.041 (2) 0.045 (2) 0.049 (2) 0.003 (2) 0.0017 (19) 0.0029 (17)
C7 0.038 (2) 0.044 (2) 0.051 (2) 0.0032 (18) −0.001 (2) −0.0001 (19)
O3 0.091 (3) 0.086 (2) 0.0543 (17) 0.013 (2) −0.0085 (19) 0.0103 (16)
C5 0.041 (2) 0.046 (2) 0.048 (2) 0.0057 (19) 0.0005 (19) 0.0005 (17)
C6 0.034 (2) 0.047 (2) 0.049 (2) 0.0020 (19) 0.0026 (18) 0.0012 (18)
C4 0.058 (3) 0.050 (2) 0.058 (2) 0.007 (2) −0.009 (2) 0.008 (2)
C8 0.047 (2) 0.064 (3) 0.055 (2) 0.008 (2) −0.011 (2) −0.009 (2)
C15 0.050 (2) 0.052 (2) 0.058 (2) 0.002 (2) 0.005 (2) −0.001 (2)
C16 0.048 (3) 0.067 (3) 0.053 (2) 0.005 (2) 0.002 (2) 0.003 (2)
C11 0.048 (3) 0.050 (2) 0.085 (3) 0.002 (2) 0.008 (3) 0.009 (2)
C17 0.069 (3) 0.068 (3) 0.074 (3) 0.007 (3) 0.004 (3) 0.008 (3)
C3 0.073 (3) 0.072 (3) 0.058 (2) 0.016 (3) −0.003 (3) 0.005 (2)
C1 0.080 (3) 0.061 (2) 0.051 (2) 0.007 (3) −0.003 (3) −0.010 (2)
C2 0.083 (4) 0.088 (3) 0.058 (3) 0.004 (3) −0.016 (3) −0.010 (3)
C13 0.072 (3) 0.047 (2) 0.090 (3) 0.006 (3) −0.002 (3) 0.008 (2)
C14 0.057 (3) 0.051 (2) 0.084 (3) 0.016 (2) 0.004 (3) −0.004 (2)
C21 0.075 (4) 0.098 (4) 0.096 (4) 0.018 (4) −0.030 (3) 0.003 (3)
C9 0.080 (3) 0.134 (5) 0.068 (3) 0.034 (4) −0.018 (3) −0.042 (3)
C12 0.063 (3) 0.052 (3) 0.107 (4) −0.003 (2) 0.003 (3) 0.018 (3)
C18 0.108 (5) 0.063 (3) 0.116 (4) 0.014 (4) 0.016 (4) 0.011 (3)
C19 0.114 (6) 0.094 (5) 0.149 (6) 0.045 (5) −0.001 (5) 0.025 (5)
C20 0.104 (5) 0.125 (5) 0.137 (6) 0.035 (5) −0.042 (5) 0.025 (5)

Geometric parameters (Å, °)

O1—C6 1.410 (5) C16—C21 1.389 (6)
O1—H1O 0.98 (8) C11—C12 1.401 (6)
N2—C4 1.466 (5) C11—H11 0.9300
N2—C1 1.468 (5) C17—C18 1.387 (7)
N2—C5 1.470 (5) C17—H17 0.9300
O2—C7 1.248 (4) C3—H3A 0.9700
N1—C7 1.333 (5) C3—H3B 0.9700
N1—C8 1.443 (5) C1—C2 1.494 (7)
N1—H1N 1.00 (7) C1—H1A 0.9700
C10—C11 1.380 (5) C1—H1B 0.9700
C10—C15 1.382 (6) C2—H2A 0.9700
C10—C5 1.514 (5) C2—H2B 0.9700
C7—C6 1.517 (5) C13—C12 1.363 (7)
O3—C2 1.416 (5) C13—C14 1.370 (6)
O3—C3 1.426 (5) C13—H13 0.9300
C5—C6 1.542 (5) C14—H14 0.9300
C5—H5 0.99 (7) C21—C20 1.376 (8)
C6—H6 1.02 (6) C21—H21 0.9300
C4—C3 1.516 (6) C9—H9A 0.9600
C4—H4A 0.9700 C9—H9B 0.9600
C4—H4B 0.9700 C9—H9C 0.9600
C8—C16 1.523 (6) C12—H12 0.9300
C8—C9 1.528 (6) C18—C19 1.376 (9)
C8—H8 1.08 (7) C18—H18 0.9300
C15—C14 1.393 (5) C19—C20 1.365 (9)
C15—H15 0.9300 C19—H19 0.9300
C16—C17 1.373 (6) C20—H20 0.9300
C6—O1—H1O 116 (4) C16—C17—H17 119.5
C4—N2—C1 107.6 (3) C18—C17—H17 119.5
C4—N2—C5 111.8 (3) O3—C3—C4 111.1 (4)
C1—N2—C5 110.8 (3) O3—C3—H3A 109.4
C7—N1—C8 124.5 (4) C4—C3—H3A 109.4
C7—N1—H1N 107 (4) O3—C3—H3B 109.4
C8—N1—H1N 127 (4) C4—C3—H3B 109.4
C11—C10—C15 118.4 (4) H3A—C3—H3B 108.0
C11—C10—C5 121.5 (4) N2—C1—C2 112.3 (4)
C15—C10—C5 120.1 (4) N2—C1—H1A 109.1
O2—C7—N1 123.7 (4) C2—C1—H1A 109.1
O2—C7—C6 119.7 (3) N2—C1—H1B 109.1
N1—C7—C6 116.5 (3) C2—C1—H1B 109.1
C2—O3—C3 108.5 (3) H1A—C1—H1B 107.9
N2—C5—C10 111.5 (3) O3—C2—C1 111.2 (4)
N2—C5—C6 111.0 (3) O3—C2—H2A 109.4
C10—C5—C6 111.1 (3) C1—C2—H2A 109.4
N2—C5—H5 112 (4) O3—C2—H2B 109.4
C10—C5—H5 104 (4) C1—C2—H2B 109.4
C6—C5—H5 107 (4) H2A—C2—H2B 108.0
O1—C6—C7 108.7 (3) C12—C13—C14 120.0 (4)
O1—C6—C5 113.8 (3) C12—C13—H13 120.0
C7—C6—C5 109.9 (3) C14—C13—H13 120.0
O1—C6—H6 110 (4) C13—C14—C15 120.1 (4)
C7—C6—H6 108 (4) C13—C14—H14 120.0
C5—C6—H6 106 (4) C15—C14—H14 120.0
N2—C4—C3 111.0 (3) C20—C21—C16 120.5 (6)
N2—C4—H4A 109.4 C20—C21—H21 119.8
C3—C4—H4A 109.4 C16—C21—H21 119.8
N2—C4—H4B 109.4 C8—C9—H9A 109.5
C3—C4—H4B 109.4 C8—C9—H9B 109.5
H4A—C4—H4B 108.0 H9A—C9—H9B 109.5
N1—C8—C16 113.0 (3) C8—C9—H9C 109.5
N1—C8—C9 108.8 (3) H9A—C9—H9C 109.5
C16—C8—C9 111.1 (4) H9B—C9—H9C 109.5
N1—C8—H8 112 (3) C13—C12—C11 120.1 (5)
C16—C8—H8 100 (3) C13—C12—H12 119.9
C9—C8—H8 112 (3) C11—C12—H12 119.9
C10—C15—C14 120.8 (4) C19—C18—C17 119.4 (6)
C10—C15—H15 119.6 C19—C18—H18 120.3
C14—C15—H15 119.6 C17—C18—H18 120.3
C17—C16—C21 118.5 (5) C20—C19—C18 120.2 (6)
C17—C16—C8 123.3 (4) C20—C19—H19 119.9
C21—C16—C8 118.1 (4) C18—C19—H19 119.9
C10—C11—C12 120.6 (4) C19—C20—C21 120.4 (6)
C10—C11—H11 119.7 C19—C20—H20 119.8
C12—C11—H11 119.7 C21—C20—H20 119.8
C16—C17—C18 121.1 (5)
C8—N1—C7—O2 6.1 (6) N1—C8—C16—C17 −3.5 (6)
C8—N1—C7—C6 −170.8 (3) C9—C8—C16—C17 119.1 (5)
C4—N2—C5—C10 −178.6 (3) N1—C8—C16—C21 175.0 (4)
C1—N2—C5—C10 −58.5 (4) C9—C8—C16—C21 −62.5 (5)
C4—N2—C5—C6 57.0 (4) C15—C10—C11—C12 −1.3 (6)
C1—N2—C5—C6 177.1 (3) C5—C10—C11—C12 179.9 (4)
C11—C10—C5—N2 −51.9 (5) C21—C16—C17—C18 1.0 (7)
C15—C10—C5—N2 129.3 (4) C8—C16—C17—C18 179.5 (4)
C11—C10—C5—C6 72.4 (5) C2—O3—C3—C4 60.3 (5)
C15—C10—C5—C6 −106.4 (4) N2—C4—C3—O3 −59.3 (5)
O2—C7—C6—O1 −177.3 (3) C4—N2—C1—C2 −54.6 (5)
N1—C7—C6—O1 −0.2 (4) C5—N2—C1—C2 −177.1 (4)
O2—C7—C6—C5 57.6 (5) C3—O3—C2—C1 −59.9 (5)
N1—C7—C6—C5 −125.4 (3) N2—C1—C2—O3 59.0 (5)
N2—C5—C6—O1 63.3 (4) C12—C13—C14—C15 −1.7 (7)
C10—C5—C6—O1 −61.3 (4) C10—C15—C14—C13 −0.3 (7)
N2—C5—C6—C7 −174.5 (3) C17—C16—C21—C20 −1.3 (8)
C10—C5—C6—C7 60.9 (4) C8—C16—C21—C20 −179.8 (6)
C1—N2—C4—C3 54.3 (5) C14—C13—C12—C11 2.1 (8)
C5—N2—C4—C3 176.2 (3) C10—C11—C12—C13 −0.6 (7)
C7—N1—C8—C16 −99.7 (5) C16—C17—C18—C19 −0.6 (8)
C7—N1—C8—C9 136.4 (4) C17—C18—C19—C20 0.4 (10)
C11—C10—C15—C14 1.7 (6) C18—C19—C20—C21 −0.7 (11)
C5—C10—C15—C14 −179.4 (4) C16—C21—C20—C19 1.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 1.00 (7) 1.92 (7) 2.569 (5) 120 (5)
O1—H1O···O2i 0.98 (8) 1.80 (8) 2.753 (4) 163 (7)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2398).

References

  1. Barbaro, G., Battaglia, A. & Giorgianni, P. (1992). J. Org. Chem.57, 5128–5136.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  3. Chen, J. J., Coles, P. J., Arnold, L. D., Smith, R. A., MacDonald, I. D., Carriére, J. & Krantz, A. (1996). Bioorg. Med. Chem. Lett.6, 435–438.
  4. Concellón, J. M. & Bardales, E. (2003a). Org. Lett.5, 4783–4785. [DOI] [PubMed]
  5. Concellón, J. M. & Bardales, E. (2003b). Tetrahedron Lett.44, 5323–5326.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Martín, L. O., Chammaa, S., Pino, M. S. G., Sánchez, A. R., García, M. C., Assiego, C. & Sarabia, F. (2004). Tetrahedron Lett.45, 9069–9072.
  10. Romero, N., Terán, J. L., Gnecco, D. & Bernès, S. (2005a). Acta Cryst. E61, o2924–o2926.
  11. Romero, N., Terán, J. L., Gnecco, D. & Bernès, S. (2005b). Acta Cryst. E61, o2927–o2929.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheppard, G. S., Wang, J., Kawai, M., BaMaung, N. T., Craig, R. A., Erickson, S. A., Lynch, L., Patel, J., Yang, F., Searle, X. B., Lou, P., Park, C., Kim, K. H., Henkin, J. & Lesniewski, R. (2004). Bioorg. Med. Chem. Lett.14, 865–868. [DOI] [PubMed]
  14. Siemens (1994). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  15. Szymanski, W. & Ostaszewski, R. (2006). Tetrahedron Asymmetry, 17, 2667–2671.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008198/is2398sup1.cif

e-65-0o743-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008198/is2398Isup2.hkl

e-65-0o743-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES