Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o842. doi: 10.1107/S1600536809010216

4-(2-Methoxy­benzyl­idene)-2-phenyl-1,3-oxazol-5(4H)-one

Abdullah Mohamed Asiri a, Mehmet Akkurt b,*, Islam Ullah Khan c, Muhammad N Arshad a
PMCID: PMC2968875  PMID: 21582561

Abstract

The title mol­ecule, C17H13NO3, adopts a Z configuration about the central olefinic bond. The 2-phenyl ring is almost coplanar with the plane of the oxazolone ring system, making a dihedral angle of 2.03 (11)°. The crystal structure is stabilized by π–π inter­actions between the oxazolone ring and phenyl ring of a neighbouring mol­ecule [centroid–centroid distance = 3.550 (3)Å], and by two weak inter­molecular C—H⋯π inter­actions. In addition, the crystal structure exhibits one weak intra­molecular C—H⋯N hydrogen bond.

Related literature

For general background to azalactones and their biological and pharmaceutical properties, see: Cannella et al. (1996); Cavelier & Verducci (1995); Gelmi et al. (1997); Gonzalez-Martinez, Puchades, Maquieira, Ferrer, Marco & Barcelo (1999); Gottwald & Seebach (1999); Mesaik et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o842-scheme1.jpg

Experimental

Crystal data

  • C17H13NO3

  • M r = 279.28

  • Triclinic, Inline graphic

  • a = 8.8073 (6) Å

  • b = 9.6140 (6) Å

  • c = 9.8272 (6) Å

  • α = 66.503 (4)°

  • β = 67.248 (4)°

  • γ = 71.734 (4)°

  • V = 691.14 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.08 × 0.05 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 14582 measured reflections

  • 3457 independent reflections

  • 1464 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.133

  • S = 0.93

  • 3457 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010216/lx2096sup1.cif

e-65-0o842-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010216/lx2096Isup2.hkl

e-65-0o842-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1 0.93 2.43 3.087 (3) 127
C17—H17ACg3i 0.96 2.81 3.682 (3) 151
C17—H17CCg2ii 0.96 2.96 3.832 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg2 is the centroid of the C1–C6 benzene ring and Cg3 is the centroid of the C11—C16 phenyl ring.

Acknowledgments

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

supplementary crystallographic information

Comment

Azalactones are a class of important heterocyclic compounds and exhibit a variety of biological and pharmaceutical properties (Mesaik et al., 2004) They are also useful precursors for the synthesis of amino acids (Gottwald & Seebach, 1999), peptides (Cavelier & Verducci, 1995), heterocycles (Cannella et al., 1996), biosensors (Gonzalez-Martinez et al., 1999), and antitumoror antimicrobial compounds (Gelmi et al., 1997). Here we report the crystal structure of the title compound, 4-(2-methoxybenzylidene)-2-phenyl-1,3-oxazol-5(4H)-one (Fig. 1).

The title molecule (Fig. 1) possesses normal geometric parameters (Allen et al., 1987) and adopts a Z configuration about the central olefinic bond. The C11–C16 phenyl ring makes a dihedral angle of 2.03 (11) ° with the plane of the oxazolone ring system. The molecular packing (Fig. 2) is stabilized by intermolecular π—π interactions between the oxazolone ring and phenyl ring of neighbouring molecules, with a Cg1···Cg3iii distance of 3.550 (3) Å (Cg1 and Cg3 are the centroids of the O1/C10/N1/C8/C9 oxazolone ring and the C11—C16 phenyl ring; symmetry code as in Fig, 2). The crystal packing is further stabilized by two intermolecular C—H···π interactions; one between the H atom of methoxy group and the phenyl ring of a neighbouring molecule, a second between the H atom of methoxy group and the methoxyphenyl ring of an adjacent molecule, respectively (Fig. 2 and Table 1; Cg2 is the centroid of the C1–C6 benzene ring, symmetry code as in Fig, 2). Additionally, there is one intramolecular C—H···N hydrogen bond between a benzene—H atom and the N atom of oxazolone ring (Table 1 and Fig. 2).

Experimental

Anhydrous sodium acetate (2.1 g, 25.3 mmol) was added to a solution of 2-methoxybenzaldehyde (3.5 g, 25.7 mmol) and hippuric acid (7.7 g, 31.1 mmol) in acetic anhydride (2.1 g, 20.6 mmol). The reaction mixture was heated to 353 K and stirred under reflux conditions for the appropriate time 2 h. The reaction mixture was cooled to room temperature and ethanol (10 ml) was added. The mixture was stirred for 10 min until a yellow solid precipitated. The mixture was allowed to stand overnight, and then it was cooled in an ice bath. The crude azalactones were obtained after filtration and washing with hot water. Recrystallization from acetone/water afforded the pure azalactones as yellow crystals. [Yield (5.79 g, 91%), m.p. 440–441 K]. IR (cm-1) 1769 (C═O),1648 (C═C).

Refinement

All H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å and refined using a riding approximation model with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

π—π, C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z; (iii) -x+1, -y+1, -z+1].

Crystal data

C17H13NO3 Z = 2
Mr = 279.28 F(000) = 292
Triclinic, P1 Dx = 1.342 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8073 (6) Å Cell parameters from 1969 reflections
b = 9.6140 (6) Å θ = 2.4–22.4°
c = 9.8272 (6) Å µ = 0.09 mm1
α = 66.503 (4)° T = 296 K
β = 67.248 (4)° Prism, yellow
γ = 71.734 (4)° 0.28 × 0.08 × 0.05 mm
V = 691.14 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 1464 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.048
graphite θmax = 28.5°, θmin = 2.4°
Detector resolution: 10.0 pixels mm-1 h = −11→11
φ and ω scans k = −12→12
14582 measured reflections l = −13→13
3457 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0583P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max = 0.001
3457 reflections Δρmax = 0.16 e Å3
192 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25166 (15) 0.44719 (14) 0.39300 (14) 0.0569 (5)
O2 0.21889 (18) 0.24891 (17) 0.34504 (18) 0.0822 (6)
O3 0.71016 (18) 0.05676 (17) −0.02406 (16) 0.0758 (6)
N1 0.51111 (18) 0.48138 (17) 0.23057 (16) 0.0496 (6)
C1 0.7332 (2) 0.2733 (2) 0.0149 (2) 0.0506 (7)
C2 0.8036 (2) 0.1640 (2) −0.0653 (2) 0.0585 (8)
C3 0.9578 (3) 0.1700 (3) −0.1783 (2) 0.0728 (9)
C4 1.0418 (3) 0.2832 (3) −0.2108 (3) 0.0812 (9)
C5 0.9784 (3) 0.3890 (3) −0.1317 (2) 0.0741 (9)
C6 0.8245 (3) 0.3836 (2) −0.0200 (2) 0.0613 (8)
C7 0.5675 (2) 0.2690 (2) 0.1242 (2) 0.0534 (7)
C8 0.4736 (2) 0.3592 (2) 0.2139 (2) 0.0494 (7)
C9 0.3054 (3) 0.3362 (2) 0.3179 (2) 0.0570 (8)
C10 0.3815 (2) 0.5263 (2) 0.3330 (2) 0.0469 (6)
C11 0.3562 (2) 0.6487 (2) 0.3944 (2) 0.0496 (7)
C12 0.2070 (3) 0.6867 (2) 0.5026 (2) 0.0623 (8)
C13 0.1867 (3) 0.8024 (3) 0.5607 (3) 0.0762 (9)
C14 0.3129 (4) 0.8808 (3) 0.5107 (3) 0.0779 (10)
C15 0.4617 (3) 0.8459 (3) 0.4015 (3) 0.0760 (10)
C16 0.4826 (3) 0.7300 (2) 0.3435 (2) 0.0627 (8)
C17 0.7702 (3) −0.0552 (3) −0.1038 (3) 0.0876 (10)
H3 1.00400 0.09810 −0.23150 0.0870*
H4 1.14440 0.28850 −0.28830 0.0970*
H5 1.03870 0.46320 −0.15340 0.0890*
H6 0.78080 0.45550 0.03320 0.0740*
H7 0.51770 0.19180 0.13430 0.0640*
H12 0.12020 0.63380 0.53610 0.0750*
H13 0.08670 0.82700 0.63400 0.0910*
H14 0.29880 0.95860 0.55060 0.0940*
H15 0.54730 0.90020 0.36740 0.0910*
H16 0.58250 0.70640 0.26970 0.0750*
H17A 0.78080 −0.00370 −0.21230 0.1310*
H17B 0.69250 −0.12400 −0.06060 0.1310*
H17C 0.87760 −0.11310 −0.09190 0.1310*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0465 (8) 0.0591 (8) 0.0597 (8) −0.0112 (7) −0.0015 (6) −0.0266 (7)
O2 0.0612 (10) 0.0754 (11) 0.1086 (12) −0.0262 (9) 0.0020 (8) −0.0443 (9)
O3 0.0732 (10) 0.0836 (11) 0.0839 (10) −0.0087 (9) −0.0127 (8) −0.0548 (9)
N1 0.0455 (10) 0.0547 (10) 0.0470 (9) −0.0084 (8) −0.0074 (8) −0.0216 (8)
C1 0.0443 (12) 0.0614 (13) 0.0448 (10) −0.0030 (10) −0.0130 (9) −0.0211 (10)
C2 0.0491 (13) 0.0736 (15) 0.0529 (12) 0.0025 (11) −0.0192 (10) −0.0271 (11)
C3 0.0546 (14) 0.1005 (19) 0.0614 (13) 0.0044 (14) −0.0130 (11) −0.0424 (13)
C4 0.0519 (14) 0.116 (2) 0.0599 (14) −0.0092 (15) −0.0056 (11) −0.0282 (15)
C5 0.0538 (14) 0.0970 (18) 0.0667 (14) −0.0201 (13) −0.0109 (12) −0.0236 (13)
C6 0.0533 (13) 0.0743 (15) 0.0558 (12) −0.0103 (12) −0.0134 (10) −0.0243 (11)
C7 0.0508 (12) 0.0569 (13) 0.0542 (11) −0.0078 (10) −0.0138 (10) −0.0230 (10)
C8 0.0442 (12) 0.0517 (12) 0.0486 (11) −0.0064 (10) −0.0102 (9) −0.0179 (10)
C9 0.0504 (13) 0.0538 (13) 0.0639 (13) −0.0091 (11) −0.0088 (10) −0.0244 (11)
C10 0.0417 (11) 0.0501 (12) 0.0449 (10) −0.0090 (10) −0.0112 (9) −0.0126 (9)
C11 0.0476 (12) 0.0492 (12) 0.0504 (11) −0.0018 (10) −0.0184 (9) −0.0162 (10)
C12 0.0587 (14) 0.0646 (14) 0.0605 (12) −0.0086 (11) −0.0091 (10) −0.0275 (11)
C13 0.0818 (18) 0.0753 (16) 0.0744 (15) −0.0038 (14) −0.0150 (13) −0.0430 (13)
C14 0.100 (2) 0.0622 (15) 0.0858 (17) 0.0001 (15) −0.0409 (15) −0.0367 (13)
C15 0.0810 (18) 0.0670 (15) 0.0942 (18) −0.0148 (13) −0.0392 (15) −0.0266 (14)
C16 0.0569 (14) 0.0641 (14) 0.0705 (13) −0.0072 (11) −0.0207 (11) −0.0264 (12)
C17 0.107 (2) 0.0841 (17) 0.0864 (16) 0.0101 (15) −0.0377 (15) −0.0545 (15)

Geometric parameters (Å, °)

O1—C9 1.396 (2) C11—C16 1.380 (3)
O1—C10 1.378 (2) C12—C13 1.378 (3)
O2—C9 1.192 (3) C13—C14 1.361 (5)
O3—C2 1.358 (3) C14—C15 1.380 (4)
O3—C17 1.431 (3) C15—C16 1.377 (3)
N1—C8 1.398 (3) C3—H3 0.9300
N1—C10 1.285 (2) C4—H4 0.9300
C1—C2 1.409 (3) C5—H5 0.9300
C1—C6 1.386 (3) C6—H6 0.9300
C1—C7 1.441 (3) C7—H7 0.9300
C2—C3 1.383 (3) C12—H12 0.9300
C3—C4 1.371 (4) C13—H13 0.9300
C4—C5 1.375 (4) C14—H14 0.9300
C5—C6 1.376 (3) C15—H15 0.9300
C7—C8 1.345 (3) C16—H16 0.9300
C8—C9 1.464 (3) C17—H17A 0.9600
C10—C11 1.448 (3) C17—H17B 0.9600
C11—C12 1.385 (3) C17—H17C 0.9600
O1···N1 2.260 (2) C4···H17Cvii 3.0100
O2···C14i 3.236 (3) C5···H17Cvii 2.9800
O2···C12ii 3.411 (3) C8···H6 2.8100
O1···H4iii 2.8000 C14···H17Aiv 3.0300
O1···H12 2.4500 C15···H17Aiv 3.0200
O2···H7 2.7000 C16···H4viii 3.0700
O2···H14i 2.7800 C17···H3 2.5300
O2···H12ii 2.7900 H3···C17 2.5300
O2···H13ii 2.9200 H3···H17A 2.3700
O3···H7 2.2700 H3···H17C 2.2900
N1···O1 2.260 (2) H4···O1ix 2.8000
N1···C6 3.087 (3) H4···C16viii 3.0700
N1···H6 2.4300 H4···H16viii 2.5000
N1···H16 2.6300 H6···N1 2.4300
C1···C10iv 3.553 (3) H6···C8 2.8100
C2···C10iv 3.532 (3) H7···O2 2.7000
C5···C9iv 3.481 (4) H7···O3 2.2700
C6···N1 3.087 (3) H7···H17Bx 2.5600
C6···C9iv 3.392 (3) H12···O1 2.4500
C6···C8iv 3.561 (3) H12···O2ii 2.7900
C8···C14v 3.524 (4) H13···O2ii 2.9200
C8···C6iv 3.561 (3) H14···O2vi 2.7800
C9···C5iv 3.481 (4) H16···N1 2.6300
C9···C6iv 3.392 (3) H16···H4viii 2.5000
C10···C16v 3.530 (3) H17A···C3 2.7900
C10···C2iv 3.532 (3) H17A···H3 2.3700
C10···C1iv 3.553 (3) H17A···C14iv 3.0300
C12···O2ii 3.411 (3) H17A···C15iv 3.0200
C14···C8v 3.524 (4) H17B···H7x 2.5600
C14···O2vi 3.236 (3) H17C···C3 2.7400
C16···C10v 3.530 (3) H17C···H3 2.2900
C3···H17A 2.7900 H17C···C4vii 3.0100
C3···H17C 2.7400 H17C···C5vii 2.9800
C9—O1—C10 105.44 (16) C14—C15—C16 119.5 (3)
C2—O3—C17 119.06 (18) C11—C16—C15 120.4 (2)
C8—N1—C10 105.35 (16) C2—C3—H3 120.00
C2—C1—C6 118.16 (17) C4—C3—H3 120.00
C2—C1—C7 118.56 (17) C3—C4—H4 119.00
C6—C1—C7 123.23 (18) C5—C4—H4 119.00
O3—C2—C1 115.60 (17) C4—C5—H5 120.00
O3—C2—C3 123.94 (19) C6—C5—H5 120.00
C1—C2—C3 120.5 (2) C1—C6—H6 119.00
C2—C3—C4 119.2 (2) C5—C6—H6 119.00
C3—C4—C5 121.7 (3) C1—C7—H7 115.00
C4—C5—C6 119.1 (3) C8—C7—H7 115.00
C1—C6—C5 121.38 (19) C11—C12—H12 120.00
C1—C7—C8 130.09 (18) C13—C12—H12 120.00
N1—C8—C7 129.85 (18) C12—C13—H13 120.00
N1—C8—C9 108.50 (16) C14—C13—H13 120.00
C7—C8—C9 121.64 (18) C13—C14—H14 120.00
O1—C9—O2 121.5 (2) C15—C14—H14 120.00
O1—C9—C8 104.65 (18) C14—C15—H15 120.00
O2—C9—C8 133.90 (18) C16—C15—H15 120.00
O1—C10—N1 116.07 (17) C11—C16—H16 120.00
O1—C10—C11 116.07 (16) C15—C16—H16 120.00
N1—C10—C11 127.85 (18) O3—C17—H17A 110.00
C10—C11—C12 121.32 (19) O3—C17—H17B 109.00
C10—C11—C16 119.45 (17) O3—C17—H17C 109.00
C12—C11—C16 119.23 (18) H17A—C17—H17B 109.00
C11—C12—C13 120.2 (2) H17A—C17—H17C 109.00
C12—C13—C14 120.0 (3) H17B—C17—H17C 109.00
C13—C14—C15 120.6 (3)
C10—O1—C9—O2 −179.7 (2) C3—C4—C5—C6 −1.8 (4)
C10—O1—C9—C8 0.43 (19) C4—C5—C6—C1 0.5 (4)
C9—O1—C10—N1 −0.3 (2) C1—C7—C8—N1 −2.0 (3)
C9—O1—C10—C11 −179.54 (16) C1—C7—C8—C9 179.55 (19)
C17—O3—C2—C1 177.88 (19) N1—C8—C9—O1 −0.5 (2)
C17—O3—C2—C3 −1.9 (3) N1—C8—C9—O2 179.7 (2)
C10—N1—C8—C7 −178.4 (2) C7—C8—C9—O1 178.32 (17)
C10—N1—C8—C9 0.3 (2) C7—C8—C9—O2 −1.5 (4)
C8—N1—C10—O1 0.0 (2) O1—C10—C11—C12 −2.4 (3)
C8—N1—C10—C11 179.13 (18) O1—C10—C11—C16 178.04 (17)
C6—C1—C2—O3 178.68 (18) N1—C10—C11—C12 178.42 (19)
C6—C1—C2—C3 −1.6 (3) N1—C10—C11—C16 −1.1 (3)
C7—C1—C2—O3 −3.8 (3) C10—C11—C12—C13 179.2 (2)
C7—C1—C2—C3 175.91 (19) C16—C11—C12—C13 −1.2 (3)
C2—C1—C6—C5 1.2 (3) C10—C11—C16—C15 −179.4 (2)
C7—C1—C6—C5 −176.2 (2) C12—C11—C16—C15 1.1 (3)
C2—C1—C7—C8 −179.85 (19) C11—C12—C13—C14 0.6 (4)
C6—C1—C7—C8 −2.5 (3) C12—C13—C14—C15 0.2 (4)
O3—C2—C3—C4 −180.0 (2) C13—C14—C15—C16 −0.4 (4)
C1—C2—C3—C4 0.3 (3) C14—C15—C16—C11 −0.3 (4)
C2—C3—C4—C5 1.4 (4)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) x−1, y, z+1; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x, y+1, z; (vii) −x+2, −y, −z; (viii) −x+2, −y+1, −z; (ix) x+1, y, z−1; (x) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···N1 0.93 2.43 3.087 (3) 127
C17—H17A···Cg3iv 0.96 2.81 3.682 (3) 151
C17—H17C···Cg2vii 0.96 2.96 3.832 (3) 151

Symmetry codes: (iv) −x+1, −y+1, −z; (vii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2096).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cannella, R., Clerici, F., Gelmi, M. L., Penso, M. & &Pocar, D. (1996). J. Org. Chem 61,1854-1856. [DOI] [PubMed]
  5. Cavelier, F. & Verducci, J. (1995). Tetrahedron Lett 36, 4425-4428.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Gelmi, M. L., Clerici, F. & Melis, A. (1997). Tetrahedron, 53, 1843-1854.
  9. Gonzalez-Martinez, M. A., Puchades, R., Maquieira, A., Ferrer, I., Marco, M. P. & Barcelo, D. (1999). Anal. Chim. Acta, 386, 201-210.
  10. Gottwald, K. & Seebach, D. (1999). Tetrahedron, 55 , 723-738.
  11. Mesaik, M. A., Rahat, S., Khan, M. K., Ullah, Z., Choudhary, M. I., Murad, S., Ismail, Z. & Atta-ur-Rahman, A. A. (2004). Bioorg. Med. Chem 12, 2049-2057. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010216/lx2096sup1.cif

e-65-0o842-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010216/lx2096Isup2.hkl

e-65-0o842-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES