Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):o755. doi: 10.1107/S1600536809008617

4-Hydr­oxy-3-mesityl-1-oxaspiro­[4.4]non-3-en-2-one

Jin-Hao Zhao a, Yong Zhou b, Guo-Nian Zhu a, Jing-Li Cheng a,*
PMCID: PMC2968886  PMID: 21582486

Abstract

In the title compound, C17H20O3, the five-membered cyclo­pentyl ring displays an envelope conformation, with the atom at the flap position 0.538 (3) Å out of the mean plane formed by the other four atoms. The dihedral angle between the benzene and furan rings is 63.34 (15)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming a zigzag chain along [101].

Related literature

For related compounds, see: Fischer et al. (1995); Bayer Aktiengesellschaft (1995). For a related structure, see: Yu et al. (2009).graphic file with name e-65-0o755-scheme1.jpg

Experimental

Crystal data

  • C17H20O3

  • M r = 272.33

  • Monoclinic, Inline graphic

  • a = 8.8543 (4) Å

  • b = 17.9266 (7) Å

  • c = 9.4883 (4) Å

  • β = 97.809 (2)°

  • V = 1492.09 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.48 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.947, T max = 0.984

  • 14502 measured reflections

  • 3410 independent reflections

  • 2344 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.139

  • S = 1.00

  • 3410 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008617/is2389sup1.cif

e-65-0o755-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008617/is2389Isup2.hkl

e-65-0o755-Isup2.hkl (163.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.6267 (14) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China, for financial support (2008 C21029) and also thank Professor Jian-Ming Gu for his help with the crystal data analysis.

supplementary crystallographic information

Comment

Substituted 4-hydroxy-1-oxaspiro[4,4]non-3-en-2-one represent an important class of tetronic acids and part of them have high biological activity as herbicides and insecticides (Fischer et al., 1995). Bayer company has developed three tetronic acids pesticides-spirodiclofen, spiromesifen and spirotetramat (Bayer Aktiengesellschaft, 1995). In addition, the title compound 3-mesityl-4-hydroxy-1-oxaspiro[4,4]non-3-en-2-one is the key intermediate in preparing highly efficient acaricide- spiromesifen. As part of our continuing interest in the new acaricide design and synthesis, We have isolated the product, (I), of the cyclized reaction of 1-(2-mesityl-acetoxy)-cyclopentanecarboxylic acid methyl ester as colorless crystals suitable for X-ray analysis.

The molecular structure of (I) is shown in Fig. 1. The molecule contains one benzene ring and two five membered rings. The dihedral angle between benzene and furan rings is 63.28 (15)°, smaller than the angle between benzene and furan rings of the compound 3-Mesityl-2-oxo-1-oxaspiro[4,4]non-3-en-4-yl-2-(4-chlorophenyl) -3-methylbutyrate (Yu et al., 2009). The cyclopentyl ring displays an envelope conformation with C17 atom at the flap position 0.538 (3) Å out of the mean plane formed by the other four atoms. The title molecules are linked through an intermolecular hydrogen bond of O1—H1···O2. As expected, C2—C3 and C4—O2 are typically double bonds with bond distances of 1.344 (2) and 1.220 (2) Å. The bond distance of C3—C4 is 1.457 (2) Å, suggesting that carbonyl group on C4 has formed conjugate system with double bond on C3 and C2.

Experimental

1-(2-Mesityl-acetoxy)-cyclopentanecarboxylic acid methyl ester (10 mmol, 3.04 g) was added to a solution of potassium t-butoxide (12 mmol, 1.34 g) in t-butylalcohol (35 ml) and the mixture was stirred at reflux for 5 h. Then water (70 ml) was added and the solution was acidified with hydrochloric (2M) to give a solid precipitate. The solid was filtrated and recrystallized with 95% ethanol to colourless blocks.

Refinement

H atoms were included in calculated positions (C—H = 0.93–0.97 and O—H = 0.82 Å) and refined using a rinding model, with Uiso(H) = 1.2Ueq(C or O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing arrangement in the unit cell.

Fig. 3.

Fig. 3.

View showing the O—H···O hydrogen bonding (dashed lines). [Symmetry codes: (i) -1/2 + x, 1/2 - y, -1/2 + z; (ii) 1/2 + x, 1/2 - y, 1/2 + z.]

Crystal data

C17H20O3 F(000) = 584
Mr = 272.33 Dx = 1.212 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 9815 reflections
a = 8.8543 (4) Å θ = 3.1–27.5°
b = 17.9266 (7) Å µ = 0.08 mm1
c = 9.4883 (4) Å T = 296 K
β = 97.809 (2)° Chunk, colorless
V = 1492.09 (11) Å3 0.54 × 0.48 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3410 independent reflections
Radiation source: fine-focus sealed tube 2344 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −22→23
Tmin = 0.947, Tmax = 0.984 l = −12→11
14502 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.2966P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.003
3410 reflections Δρmax = 0.21 e Å3
186 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58430 (13) 0.34534 (6) 0.74039 (12) 0.0565 (3)
H1 0.6644 0.3224 0.7610 0.068*
O2 0.35651 (13) 0.19282 (7) 0.36494 (12) 0.0566 (3)
O3 0.28216 (11) 0.29401 (6) 0.47485 (11) 0.0509 (3)
C1 0.34616 (17) 0.34474 (8) 0.58738 (16) 0.0479 (4)
C2 0.49897 (16) 0.31085 (8) 0.63500 (15) 0.0441 (3)
C3 0.52342 (15) 0.25023 (8) 0.55790 (15) 0.0423 (3)
C4 0.38583 (16) 0.24044 (8) 0.45643 (16) 0.0449 (4)
C5 0.66240 (15) 0.20313 (8) 0.56780 (14) 0.0418 (3)
C6 0.65908 (17) 0.12818 (9) 0.60806 (15) 0.0466 (4)
C7 0.7938 (2) 0.08727 (10) 0.62374 (18) 0.0577 (4)
H7 0.7910 0.0373 0.6496 0.069*
C8 0.93077 (19) 0.11821 (12) 0.60223 (19) 0.0630 (5)
C9 0.93142 (18) 0.19158 (12) 0.55935 (19) 0.0632 (5)
H9 1.0232 0.2129 0.5428 0.076*
C10 0.79980 (17) 0.23510 (10) 0.53979 (17) 0.0516 (4)
C11 0.5131 (2) 0.09125 (10) 0.6355 (2) 0.0669 (5)
H11A 0.5348 0.0421 0.6729 0.080*
H11B 0.4447 0.0879 0.5480 0.080*
H11C 0.4665 0.1202 0.7029 0.080*
C12 1.0770 (2) 0.07381 (16) 0.6244 (3) 0.0992 (9)
H12A 1.1297 0.0795 0.5430 0.119*
H12B 1.0539 0.0221 0.6365 0.119*
H12C 1.1404 0.0916 0.7077 0.119*
C13 0.8078 (3) 0.31327 (12) 0.4869 (3) 0.0788 (6)
H13A 0.7232 0.3224 0.4144 0.095*
H13B 0.9014 0.3202 0.4481 0.095*
H13C 0.8039 0.3474 0.5642 0.095*
C14 0.2387 (2) 0.35110 (11) 0.7003 (2) 0.0651 (5)
H14A 0.1679 0.3095 0.6926 0.078*
H14B 0.2964 0.3507 0.7948 0.078*
C15 0.1532 (3) 0.42400 (14) 0.6740 (3) 0.0951 (8)
H15A 0.0442 0.4157 0.6673 0.114*
H15B 0.1836 0.4588 0.7509 0.114*
C16 0.1930 (3) 0.45354 (13) 0.5383 (3) 0.0983 (9)
H16A 0.1941 0.5076 0.5393 0.118*
H16B 0.1201 0.4368 0.4590 0.118*
C17 0.3512 (2) 0.42296 (10) 0.5263 (2) 0.0672 (5)
H17A 0.3699 0.4215 0.4280 0.081*
H17B 0.4297 0.4528 0.5811 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0467 (6) 0.0659 (7) 0.0516 (6) 0.0019 (5) −0.0130 (5) −0.0115 (5)
O3 0.0375 (5) 0.0604 (6) 0.0503 (6) 0.0066 (4) −0.0107 (5) −0.0036 (5)
O1 0.0467 (6) 0.0621 (7) 0.0544 (6) 0.0071 (5) −0.0158 (5) −0.0121 (5)
C6 0.0434 (8) 0.0533 (8) 0.0421 (7) 0.0022 (6) 0.0023 (6) −0.0025 (6)
C2 0.0375 (7) 0.0511 (8) 0.0404 (7) 0.0005 (6) −0.0062 (6) 0.0018 (6)
C5 0.0337 (7) 0.0544 (8) 0.0350 (7) 0.0002 (6) −0.0033 (5) −0.0035 (6)
C4 0.0362 (7) 0.0538 (8) 0.0420 (7) −0.0003 (6) −0.0040 (6) 0.0018 (7)
C7 0.0587 (10) 0.0606 (10) 0.0515 (9) 0.0148 (8) −0.0014 (8) −0.0052 (8)
C3 0.0331 (7) 0.0508 (8) 0.0403 (7) −0.0003 (6) −0.0045 (6) 0.0010 (6)
C1 0.0415 (8) 0.0530 (8) 0.0450 (8) 0.0063 (6) −0.0086 (6) −0.0003 (6)
C10 0.0393 (8) 0.0672 (10) 0.0471 (8) −0.0077 (7) 0.0016 (6) −0.0061 (7)
C9 0.0325 (8) 0.0966 (14) 0.0598 (10) −0.0071 (8) 0.0035 (7) −0.0207 (10)
C8 0.0434 (9) 0.0874 (13) 0.0544 (9) 0.0161 (9) −0.0069 (7) −0.0207 (9)
C11 0.0600 (11) 0.0624 (10) 0.0800 (12) −0.0036 (8) 0.0157 (9) 0.0087 (9)
C14 0.0505 (10) 0.0856 (13) 0.0572 (10) 0.0117 (9) 0.0003 (8) −0.0070 (9)
C17 0.0730 (12) 0.0551 (10) 0.0672 (11) 0.0017 (8) −0.0126 (9) 0.0091 (8)
C13 0.0677 (13) 0.0812 (13) 0.0881 (14) −0.0219 (10) 0.0133 (11) 0.0100 (11)
C16 0.0885 (17) 0.0668 (13) 0.127 (2) 0.0307 (12) −0.0290 (16) −0.0023 (14)
C12 0.0569 (12) 0.129 (2) 0.1046 (17) 0.0382 (13) −0.0141 (12) −0.0354 (16)
C15 0.0583 (12) 0.0889 (16) 0.135 (2) 0.0126 (11) 0.0030 (13) −0.0317 (16)

Geometric parameters (Å, °)

O2—C4 1.2200 (18) C8—C12 1.510 (2)
O3—C4 1.3561 (18) C11—H11A 0.9600
O3—C1 1.4574 (18) C11—H11B 0.9600
O1—C2 1.3221 (17) C11—H11C 0.9600
O1—H1 0.8200 C14—C15 1.514 (3)
C6—C7 1.391 (2) C14—H14A 0.9700
C6—C5 1.398 (2) C14—H14B 0.9700
C6—C11 1.506 (2) C17—C16 1.523 (3)
C2—C3 1.344 (2) C17—H17A 0.9700
C2—C1 1.4960 (19) C17—H17B 0.9700
C5—C10 1.402 (2) C13—H13A 0.9600
C5—C3 1.4847 (19) C13—H13B 0.9600
C4—C3 1.4571 (19) C13—H13C 0.9600
C7—C8 1.374 (3) C16—C15 1.479 (4)
C7—H7 0.9300 C16—H16A 0.9700
C1—C17 1.520 (2) C16—H16B 0.9700
C1—C14 1.531 (3) C12—H12A 0.9600
C10—C9 1.394 (2) C12—H12B 0.9600
C10—C13 1.493 (3) C12—H12C 0.9600
C9—C8 1.377 (3) C15—H15A 0.9700
C9—H9 0.9300 C15—H15B 0.9700
C4—O3—C1 109.49 (10) H11A—C11—H11C 109.5
C2—O1—H1 109.5 H11B—C11—H11C 109.5
C7—C6—C5 119.10 (15) C15—C14—C1 107.09 (18)
C7—C6—C11 119.57 (15) C15—C14—H14A 110.3
C5—C6—C11 121.33 (14) C1—C14—H14A 110.3
O1—C2—C3 132.24 (13) C15—C14—H14B 110.3
O1—C2—C1 116.03 (13) C1—C14—H14B 110.3
C3—C2—C1 111.72 (12) H14A—C14—H14B 108.6
C6—C5—C10 119.70 (14) C1—C17—C16 103.20 (18)
C6—C5—C3 121.04 (13) C1—C17—H17A 111.1
C10—C5—C3 119.24 (14) C16—C17—H17A 111.1
O2—C4—O3 120.32 (12) C1—C17—H17B 111.1
O2—C4—C3 129.22 (14) C16—C17—H17B 111.1
O3—C4—C3 110.45 (13) H17A—C17—H17B 109.1
C8—C7—C6 122.20 (17) C10—C13—H13A 109.5
C8—C7—H7 118.9 C10—C13—H13B 109.5
C6—C7—H7 118.9 H13A—C13—H13B 109.5
C2—C3—C4 105.96 (13) C10—C13—H13C 109.5
C2—C3—C5 128.23 (12) H13A—C13—H13C 109.5
C4—C3—C5 125.79 (13) H13B—C13—H13C 109.5
O3—C1—C2 102.33 (11) C15—C16—C17 105.47 (17)
O3—C1—C17 108.96 (12) C15—C16—H16A 110.6
C2—C1—C17 114.67 (14) C17—C16—H16A 110.6
O3—C1—C14 110.02 (13) C15—C16—H16B 110.6
C2—C1—C14 116.21 (13) C17—C16—H16B 110.6
C17—C1—C14 104.56 (14) H16A—C16—H16B 108.8
C9—C10—C5 118.51 (16) C8—C12—H12A 109.5
C9—C10—C13 119.54 (16) C8—C12—H12B 109.5
C5—C10—C13 121.93 (16) H12A—C12—H12B 109.5
C8—C9—C10 122.48 (16) C8—C12—H12C 109.5
C8—C9—H9 118.8 H12A—C12—H12C 109.5
C10—C9—H9 118.8 H12B—C12—H12C 109.5
C7—C8—C9 117.95 (15) C16—C15—C14 106.21 (19)
C7—C8—C12 121.6 (2) C16—C15—H15A 110.5
C9—C8—C12 120.4 (2) C14—C15—H15A 110.5
C6—C11—H11A 109.5 C16—C15—H15B 110.5
C6—C11—H11B 109.5 C14—C15—H15B 110.5
H11A—C11—H11B 109.5 H15A—C15—H15B 108.7
C6—C11—H11C 109.5
C7—C6—C5—C10 1.9 (2) C3—C2—C1—O3 1.92 (17)
C11—C6—C5—C10 −178.43 (15) O1—C2—C1—C17 63.07 (19)
C7—C6—C5—C3 −176.40 (13) C3—C2—C1—C17 −115.89 (16)
C11—C6—C5—C3 3.2 (2) O1—C2—C1—C14 −59.24 (19)
C1—O3—C4—O2 −178.53 (14) C3—C2—C1—C14 121.80 (16)
C1—O3—C4—C3 1.85 (17) C6—C5—C10—C9 −2.9 (2)
C5—C6—C7—C8 0.6 (2) C3—C5—C10—C9 175.51 (14)
C11—C6—C7—C8 −179.04 (16) C6—C5—C10—C13 175.74 (16)
O1—C2—C3—C4 −179.64 (16) C3—C5—C10—C13 −5.9 (2)
C1—C2—C3—C4 −0.90 (18) C5—C10—C9—C8 1.3 (3)
O1—C2—C3—C5 −1.5 (3) C13—C10—C9—C8 −177.29 (17)
C1—C2—C3—C5 177.20 (14) C6—C7—C8—C9 −2.1 (2)
O2—C4—C3—C2 179.84 (16) C6—C7—C8—C12 177.94 (17)
O3—C4—C3—C2 −0.58 (18) C10—C9—C8—C7 1.1 (3)
O2—C4—C3—C5 1.7 (3) C10—C9—C8—C12 −178.93 (18)
O3—C4—C3—C5 −178.75 (13) O3—C1—C14—C15 −101.66 (17)
C6—C5—C3—C2 116.31 (18) C2—C1—C14—C15 142.70 (16)
C10—C5—C3—C2 −62.0 (2) C17—C1—C14—C15 15.21 (19)
C6—C5—C3—C4 −65.9 (2) O3—C1—C17—C16 85.95 (18)
C10—C5—C3—C4 115.72 (17) C2—C1—C17—C16 −160.07 (16)
C4—O3—C1—C2 −2.22 (16) C14—C1—C17—C16 −31.65 (18)
C4—O3—C1—C17 119.58 (15) C1—C17—C16—C15 37.3 (2)
C4—O3—C1—C14 −126.33 (14) C17—C16—C15—C14 −27.9 (2)
O1—C2—C1—O3 −179.12 (13) C1—C14—C15—C16 7.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.87 2.6267 (14) 154

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2389).

References

  1. Bayer Aktiengesellschaft (1995). WO Patent No. 9 504 719A1.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Fischer, R., Santel, B. W. & Erdelen, C. (1995). German Patent No. 4 337 853.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yu, C.-M., Zhou, Y., Cheng, J.-L. & Zhao, J.-H. (2009). Acta Cryst. E65, o183. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008617/is2389sup1.cif

e-65-0o755-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008617/is2389Isup2.hkl

e-65-0o755-Isup2.hkl (163.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES