Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o670. doi: 10.1107/S160053680900720X

24,4,8-Trioxa-21-aza-1,3,6(1,2)-tri­benzena-2(2,3)-bicyclo­[3.3.0]octa­na­cyclo­octa­phane

P R Seshadri a,*, B Balakrishnan b, K Ilangovan c, S Purushothaman d, R Raghunathan d
PMCID: PMC2968892  PMID: 21582414

Abstract

The crystal structure of the title compound, C26H25NO3, was determined as part of an investigation of host–guest and electron donor–acceptor complexes. The oxazole and the pyrrole rings both adopt envelope conformations. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The crystal structure is stabilized by a C—H⋯π inter­action.

Related literature

For biological properties of azomethine ylides, see: Chiacchio et al. (2003). For general background, see: Diederich (1991); Cram & Cram (1994); Morrison & Hoger (1996); Padwa (1984). For reference bond-length data, see: Allen et al. (1987).For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-65-0o670-scheme1.jpg

Experimental

Crystal data

  • C26H25NO3

  • M r = 399.47

  • Monoclinic, Inline graphic

  • a = 31.1942 (7) Å

  • b = 8.3992 (2) Å

  • c = 16.0323 (4) Å

  • β = 101.468 (1)°

  • V = 4116.70 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.979, T max = 0.983

  • 22005 measured reflections

  • 5004 independent reflections

  • 2790 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.213

  • S = 1.03

  • 5004 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900720X/wn2311sup1.cif

e-65-0o670-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900720X/wn2311Isup2.hkl

e-65-0o670-Isup2.hkl (240.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.97 2.94 3.827 (3) 153

Symmetry code: (i) Inline graphic. Cg1 is the centroid of the C1–C6 ring.

Acknowledgments

BB thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The design and synthesis of cyclophanes possessing rigidly defined cavities and shape-persistent structures of molecular dimensions is of interest as molecular hosts in the areas of host-guest and electron donor-acceptor complexes (Diederich, 1991; Cram & Cram, 1994; Morrison & Hoger, 1996). 1,3-Dipolar cycloaddition reactions afford efficient methods for the construction of heterocyclic units in a highly regio- and stereoselective manner (Padwa, 1984). In particular, the chemistry of azomethine ylides has gained significance in recent years as it serves as an expedient route for the construction of nitrogen heterocycles. N and O heterocycles have also been shown to provide useful information about anticancer and antiviral properties (Chiacchio et al., 2003).

In the crystal structure of the title compound, the oxazole ring adopts an envelope conformation with atom C15 displaced by 0.172 (3) Å from the plane of the other ring atoms N1/O3//C14/C19. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 =0.275 (2) Å, φ = 152.3 (5)°, ΔS(C15) = 5.7 (2)° and Δ2(C19) = 8.5 (2)°. The pyrrole ring also adopts an envelope conformation with atom C18 displaced by 0.208 (3) Å from the plane of the other ring atoms C15/C16/C17/N1. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2= 0.329 (3) Å, φ = 144.0 (6)°, ΔS(C18) = 0.9 (4)° and Δ2(C16) = 16.5 (4)°.

The conformation of the cyclophane ring O1/ C7/ C6/ C1/ C26/ O2/ C21/ C20/ C19/ C14/ C13/ C8 is described by the torsion angles in Table 1. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The bond lengths (Allen et al., 1987) and bond angles are in agreement with the values reported in literature.

The crystal structure is stabilized by a C—H···π (C7—H7A···Cg1) interaction, where Cg1 is the centroid of the C1—C6 ring.

Experimental

To a solution of O,O'-coupled salicylaldehyde (bis aldehyde), using o-xylylene bromide (2 mmol) in dry acetonitrile (20 ml), was added L-proline (1 mmol) under an N2 atmosphere. The reaction was refluxed for 4 h. After completion of the reaction, the solvent was distilled off under reduced pressure and the crude product was purified by column chromatography.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 30% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen atoms of the benzene rings are omitted for clarity.

Crystal data

C26H25NO3 F(000) = 1696
Mr = 399.47 Dx = 1.289 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C2/c Cell parameters from 4735 reflections
a = 31.1942 (7) Å θ = 1.3–28.2°
b = 8.3992 (2) Å µ = 0.08 mm1
c = 16.0323 (4) Å T = 293 K
β = 101.468 (1)° Block, colourless
V = 4116.70 (17) Å3 0.25 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII area-detector diffractometer 5004 independent reflections
Radiation source: fine-focus sealed tube 2790 reflections with I > 2σ(I)
graphite Rint = 0.029
ω scans θmax = 28.2°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −40→41
Tmin = 0.979, Tmax = 0.983 k = −11→10
22005 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1118P)2 + 1.2039P] where P = (Fo2 + 2Fc2)/3
5004 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20831 (5) 1.12120 (17) 0.44961 (9) 0.0625 (4)
O2 0.14559 (5) 0.87432 (17) 0.35663 (10) 0.0594 (4)
O3 0.11764 (7) 1.3961 (2) 0.32924 (11) 0.0843 (6)
N1 0.06599 (6) 1.2386 (2) 0.24650 (12) 0.0645 (5)
C1 0.21940 (7) 0.7919 (3) 0.37217 (15) 0.0599 (6)
C2 0.22911 (10) 0.7010 (3) 0.30588 (17) 0.0781 (8)
H2 0.2090 0.6262 0.2794 0.094*
C3 0.26785 (11) 0.7196 (4) 0.27879 (19) 0.0905 (9)
H3 0.2739 0.6577 0.2345 0.109*
C4 0.29724 (11) 0.8295 (4) 0.3174 (2) 0.0923 (9)
H4 0.3236 0.8419 0.2993 0.111*
C5 0.28860 (8) 0.9222 (3) 0.38261 (18) 0.0752 (7)
H5 0.3090 0.9971 0.4081 0.090*
C6 0.24927 (8) 0.9047 (3) 0.41087 (15) 0.0607 (6)
C7 0.24064 (8) 1.0041 (3) 0.48294 (15) 0.0668 (6)
H7A 0.2302 0.9376 0.5242 0.080*
H7B 0.2674 1.0560 0.5112 0.080*
C8 0.17635 (7) 1.1527 (2) 0.49412 (13) 0.0527 (5)
C9 0.18214 (9) 1.1313 (3) 0.58168 (14) 0.0665 (6)
H9 0.2089 1.0964 0.6125 0.080*
C10 0.14848 (10) 1.1616 (3) 0.62241 (16) 0.0745 (7)
H10 0.1523 1.1456 0.6808 0.089*
C11 0.10922 (10) 1.2155 (3) 0.57754 (17) 0.0774 (7)
H11 0.0862 1.2343 0.6052 0.093*
C12 0.10395 (8) 1.2421 (3) 0.49096 (16) 0.0704 (7)
H12 0.0774 1.2816 0.4612 0.084*
C13 0.13715 (7) 1.2113 (2) 0.44787 (13) 0.0525 (5)
C14 0.13172 (7) 1.2381 (3) 0.35333 (14) 0.0563 (5)
H14 0.1603 1.2224 0.3381 0.068*
C15 0.07270 (10) 1.3900 (3) 0.28885 (17) 0.0798 (8)
H15 0.0538 1.4013 0.3306 0.096*
C16 0.06289 (13) 1.5177 (4) 0.22115 (19) 0.1011 (10)
H16A 0.0388 1.5845 0.2301 0.121*
H16B 0.0884 1.5840 0.2213 0.121*
C17 0.05085 (14) 1.4273 (4) 0.1393 (2) 0.1170 (12)
H17A 0.0193 1.4220 0.1209 0.140*
H17B 0.0631 1.4782 0.0950 0.140*
C18 0.06941 (10) 1.2667 (3) 0.15755 (16) 0.0816 (8)
H18A 0.0528 1.1882 0.1201 0.098*
H18B 0.0997 1.2631 0.1511 0.098*
C19 0.09799 (7) 1.1284 (2) 0.29399 (13) 0.0525 (5)
H19 0.1133 1.0770 0.2534 0.063*
C20 0.07809 (7) 0.9999 (3) 0.33905 (12) 0.0519 (5)
C21 0.10425 (7) 0.8702 (2) 0.37255 (13) 0.0540 (5)
C22 0.08812 (9) 0.7507 (3) 0.41656 (16) 0.0687 (7)
H22 0.1058 0.6657 0.4391 0.082*
C23 0.04511 (10) 0.7597 (3) 0.42659 (19) 0.0816 (8)
H23 0.0338 0.6801 0.4563 0.098*
C24 0.01903 (9) 0.8843 (4) 0.3933 (2) 0.0832 (8)
H24 −0.0099 0.8886 0.4001 0.100*
C25 0.03556 (8) 1.0033 (3) 0.34981 (16) 0.0698 (7)
H25 0.0176 1.0875 0.3273 0.084*
C26 0.17676 (7) 0.7624 (3) 0.39923 (16) 0.0657 (6)
H26A 0.1668 0.6548 0.3845 0.079*
H26B 0.1804 0.7750 0.4604 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0701 (10) 0.0589 (9) 0.0583 (9) 0.0164 (7) 0.0121 (8) 0.0064 (7)
O2 0.0591 (9) 0.0554 (9) 0.0626 (9) 0.0100 (7) 0.0094 (7) 0.0100 (7)
O3 0.1190 (16) 0.0529 (10) 0.0703 (11) −0.0025 (9) −0.0067 (10) 0.0091 (8)
N1 0.0603 (12) 0.0722 (13) 0.0579 (11) 0.0056 (9) 0.0046 (9) 0.0161 (9)
C1 0.0632 (14) 0.0525 (12) 0.0595 (13) 0.0157 (10) 0.0015 (11) 0.0063 (10)
C2 0.0860 (19) 0.0707 (16) 0.0692 (16) 0.0215 (13) −0.0045 (14) −0.0063 (13)
C3 0.098 (2) 0.100 (2) 0.0741 (18) 0.0352 (18) 0.0192 (17) −0.0050 (16)
C4 0.083 (2) 0.111 (2) 0.089 (2) 0.0345 (18) 0.0320 (17) 0.0158 (19)
C5 0.0646 (16) 0.0723 (16) 0.0863 (18) 0.0094 (12) 0.0089 (13) 0.0138 (14)
C6 0.0640 (14) 0.0521 (12) 0.0622 (14) 0.0154 (10) 0.0035 (11) 0.0072 (10)
C7 0.0656 (15) 0.0626 (14) 0.0653 (15) 0.0142 (11) −0.0032 (11) 0.0013 (11)
C8 0.0643 (13) 0.0428 (11) 0.0487 (11) −0.0024 (9) 0.0059 (10) −0.0038 (8)
C9 0.0797 (16) 0.0666 (15) 0.0478 (12) −0.0007 (12) −0.0003 (11) −0.0036 (10)
C10 0.104 (2) 0.0747 (16) 0.0452 (12) −0.0122 (14) 0.0145 (14) −0.0080 (11)
C11 0.0869 (19) 0.0867 (19) 0.0649 (16) −0.0075 (14) 0.0302 (15) −0.0144 (13)
C12 0.0687 (15) 0.0807 (17) 0.0619 (15) 0.0058 (12) 0.0136 (12) −0.0048 (12)
C13 0.0616 (13) 0.0468 (11) 0.0486 (11) −0.0020 (9) 0.0097 (10) −0.0061 (9)
C14 0.0621 (13) 0.0550 (13) 0.0502 (12) 0.0010 (9) 0.0074 (10) 0.0041 (9)
C15 0.104 (2) 0.0718 (17) 0.0639 (15) 0.0302 (14) 0.0183 (15) 0.0094 (12)
C16 0.144 (3) 0.080 (2) 0.0763 (19) 0.0394 (18) 0.0144 (18) 0.0199 (16)
C17 0.178 (4) 0.086 (2) 0.078 (2) 0.009 (2) 0.004 (2) 0.0264 (18)
C18 0.102 (2) 0.0821 (18) 0.0520 (14) −0.0150 (14) −0.0052 (13) 0.0114 (12)
C19 0.0564 (12) 0.0537 (12) 0.0461 (11) 0.0062 (9) 0.0074 (9) 0.0007 (9)
C20 0.0541 (13) 0.0550 (12) 0.0445 (11) 0.0000 (9) 0.0046 (9) −0.0044 (9)
C21 0.0617 (13) 0.0503 (12) 0.0473 (11) −0.0052 (9) 0.0044 (9) −0.0047 (9)
C22 0.0781 (17) 0.0597 (14) 0.0647 (15) −0.0086 (11) 0.0053 (12) 0.0034 (11)
C23 0.092 (2) 0.0769 (18) 0.0759 (18) −0.0253 (15) 0.0164 (15) 0.0091 (14)
C24 0.0637 (16) 0.094 (2) 0.093 (2) −0.0116 (14) 0.0185 (14) 0.0062 (16)
C25 0.0621 (15) 0.0729 (16) 0.0733 (16) −0.0012 (11) 0.0109 (12) 0.0062 (12)
C26 0.0678 (15) 0.0525 (13) 0.0717 (15) 0.0072 (10) 0.0019 (12) 0.0098 (11)

Geometric parameters (Å, °)

O1—C8 1.362 (2) C11—H11 0.9300
O1—C7 1.433 (2) C12—C13 1.379 (3)
O2—C21 1.364 (3) C12—H12 0.9300
O2—C26 1.425 (2) C13—C14 1.508 (3)
O3—C15 1.423 (3) C14—C19 1.569 (3)
O3—C14 1.427 (3) C14—H14 0.9800
N1—C15 1.437 (3) C15—C16 1.513 (4)
N1—C19 1.459 (3) C15—H15 0.9800
N1—C18 1.470 (3) C16—C17 1.498 (5)
C1—C6 1.386 (3) C16—H16A 0.9700
C1—C2 1.390 (3) C16—H16B 0.9700
C1—C26 1.500 (3) C17—C18 1.475 (4)
C2—C3 1.372 (4) C17—H17A 0.9700
C2—H2 0.9300 C17—H17B 0.9700
C3—C4 1.360 (5) C18—H18A 0.9700
C3—H3 0.9300 C18—H18B 0.9700
C4—C5 1.373 (4) C19—C20 1.501 (3)
C4—H4 0.9300 C19—H19 0.9800
C5—C6 1.398 (3) C20—C25 1.372 (3)
C5—H5 0.9300 C20—C21 1.402 (3)
C6—C7 1.493 (3) C21—C22 1.378 (3)
C7—H7A 0.9700 C22—C23 1.385 (4)
C7—H7B 0.9700 C22—H22 0.9300
C8—C13 1.388 (3) C23—C24 1.367 (4)
C8—C9 1.391 (3) C23—H23 0.9300
C9—C10 1.366 (4) C24—C25 1.376 (4)
C9—H9 0.9300 C24—H24 0.9300
C10—C11 1.368 (4) C25—H25 0.9300
C10—H10 0.9300 C26—H26A 0.9700
C11—C12 1.383 (4) C26—H26B 0.9700
C8—O1—C7 118.15 (17) O3—C15—N1 106.52 (19)
C21—O2—C26 118.28 (17) O3—C15—C16 110.0 (3)
C15—O3—C14 108.19 (18) N1—C15—C16 107.4 (2)
C15—N1—C19 107.11 (18) O3—C15—H15 110.9
C15—N1—C18 106.54 (19) N1—C15—H15 110.9
C19—N1—C18 115.7 (2) C16—C15—H15 110.9
C6—C1—C2 119.2 (2) C17—C16—C15 104.4 (3)
C6—C1—C26 122.7 (2) C17—C16—H16A 110.9
C2—C1—C26 118.1 (2) C15—C16—H16A 110.9
C3—C2—C1 121.3 (3) C17—C16—H16B 110.9
C3—C2—H2 119.4 C15—C16—H16B 110.9
C1—C2—H2 119.4 H16A—C16—H16B 108.9
C4—C3—C2 119.3 (3) C18—C17—C16 105.6 (2)
C4—C3—H3 120.3 C18—C17—H17A 110.6
C2—C3—H3 120.3 C16—C17—H17A 110.6
C3—C4—C5 121.0 (3) C18—C17—H17B 110.6
C3—C4—H4 119.5 C16—C17—H17B 110.6
C5—C4—H4 119.5 H17A—C17—H17B 108.7
C4—C5—C6 120.3 (3) N1—C18—C17 103.8 (2)
C4—C5—H5 119.8 N1—C18—H18A 111.0
C6—C5—H5 119.8 C17—C18—H18A 111.0
C1—C6—C5 118.8 (2) N1—C18—H18B 111.0
C1—C6—C7 121.3 (2) C17—C18—H18B 111.0
C5—C6—C7 119.8 (2) H18A—C18—H18B 109.0
O1—C7—C6 108.49 (18) N1—C19—C20 113.70 (17)
O1—C7—H7A 110.0 N1—C19—C14 104.53 (17)
C6—C7—H7A 110.0 C20—C19—C14 114.96 (17)
O1—C7—H7B 110.0 N1—C19—H19 107.8
C6—C7—H7B 110.0 C20—C19—H19 107.8
H7A—C7—H7B 108.4 C14—C19—H19 107.8
O1—C8—C13 116.60 (18) C25—C20—C21 118.2 (2)
O1—C8—C9 122.8 (2) C25—C20—C19 123.3 (2)
C13—C8—C9 120.6 (2) C21—C20—C19 118.58 (18)
C10—C9—C8 120.0 (2) O2—C21—C22 124.7 (2)
C10—C9—H9 120.0 O2—C21—C20 114.11 (18)
C8—C9—H9 120.0 C22—C21—C20 121.2 (2)
C9—C10—C11 120.2 (2) C21—C22—C23 118.7 (2)
C9—C10—H10 119.9 C21—C22—H22 120.6
C11—C10—H10 119.9 C23—C22—H22 120.6
C10—C11—C12 119.8 (2) C24—C23—C22 120.8 (2)
C10—C11—H11 120.1 C24—C23—H23 119.6
C12—C11—H11 120.1 C22—C23—H23 119.6
C13—C12—C11 121.4 (2) C23—C24—C25 120.0 (3)
C13—C12—H12 119.3 C23—C24—H24 120.0
C11—C12—H12 119.3 C25—C24—H24 120.0
C12—C13—C8 117.9 (2) C20—C25—C24 121.2 (2)
C12—C13—C14 122.0 (2) C20—C25—H25 119.4
C8—C13—C14 120.04 (19) C24—C25—H25 119.4
O3—C14—C13 112.20 (18) O2—C26—C1 108.19 (18)
O3—C14—C19 104.38 (17) O2—C26—H26A 110.1
C13—C14—C19 116.72 (18) C1—C26—H26A 110.1
O3—C14—H14 107.7 O2—C26—H26B 110.1
C13—C14—H14 107.7 C1—C26—H26B 110.1
C19—C14—H14 107.7 H26A—C26—H26B 108.4
C6—C1—C2—C3 0.7 (4) C19—N1—C15—C16 145.9 (2)
C26—C1—C2—C3 −178.8 (2) C18—N1—C15—C16 21.5 (3)
C1—C2—C3—C4 −0.2 (4) O3—C15—C16—C17 115.0 (3)
C2—C3—C4—C5 −0.3 (5) N1—C15—C16—C17 −0.5 (4)
C3—C4—C5—C6 0.3 (4) C15—C16—C17—C18 −20.5 (4)
C2—C1—C6—C5 −0.7 (3) C15—N1—C18—C17 −34.3 (3)
C26—C1—C6—C5 178.8 (2) C19—N1—C18—C17 −153.2 (2)
C2—C1—C6—C7 −179.3 (2) C16—C17—C18—N1 33.6 (4)
C26—C1—C6—C7 0.2 (3) C15—N1—C19—C20 111.9 (2)
C4—C5—C6—C1 0.2 (3) C18—N1—C19—C20 −129.5 (2)
C4—C5—C6—C7 178.9 (2) C15—N1—C19—C14 −14.3 (2)
C8—O1—C7—C6 138.6 (2) C18—N1—C19—C14 104.3 (2)
C1—C6—C7—O1 −74.0 (3) O3—C14—C19—N1 −4.3 (2)
C5—C6—C7—O1 107.5 (2) C13—C14—C19—N1 120.2 (2)
C7—O1—C8—C13 −154.37 (19) O3—C14—C19—C20 −129.65 (19)
C7—O1—C8—C9 26.9 (3) C13—C14—C19—C20 −5.2 (3)
O1—C8—C9—C10 −178.5 (2) N1—C19—C20—C25 −12.9 (3)
C13—C8—C9—C10 2.8 (3) C14—C19—C20—C25 107.6 (2)
C8—C9—C10—C11 −1.1 (4) N1—C19—C20—C21 167.67 (18)
C9—C10—C11—C12 −1.2 (4) C14—C19—C20—C21 −71.9 (2)
C10—C11—C12—C13 1.8 (4) C26—O2—C21—C22 −10.6 (3)
C11—C12—C13—C8 −0.1 (3) C26—O2—C21—C20 170.11 (18)
C11—C12—C13—C14 179.4 (2) C25—C20—C21—O2 178.11 (19)
O1—C8—C13—C12 179.08 (19) C19—C20—C21—O2 −2.4 (3)
C9—C8—C13—C12 −2.2 (3) C25—C20—C21—C22 −1.2 (3)
O1—C8—C13—C14 −0.4 (3) C19—C20—C21—C22 178.2 (2)
C9—C8—C13—C14 178.3 (2) O2—C21—C22—C23 −178.6 (2)
C15—O3—C14—C13 −105.7 (2) C20—C21—C22—C23 0.7 (3)
C15—O3—C14—C19 21.6 (2) C21—C22—C23—C24 0.2 (4)
C12—C13—C14—O3 54.1 (3) C22—C23—C24—C25 −0.5 (4)
C8—C13—C14—O3 −126.5 (2) C21—C20—C25—C24 0.9 (3)
C12—C13—C14—C19 −66.3 (3) C19—C20—C25—C24 −178.5 (2)
C8—C13—C14—C19 113.2 (2) C23—C24—C25—C20 −0.1 (4)
C14—O3—C15—N1 −31.6 (3) C21—O2—C26—C1 −179.37 (17)
C14—O3—C15—C16 −147.6 (2) C6—C1—C26—O2 84.9 (3)
C19—N1—C15—O3 28.2 (2) C2—C1—C26—O2 −95.5 (2)
C18—N1—C15—O3 −96.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···Cg1i 0.97 2.94 3.827 (3) 153

Symmetry codes: (i) −x+1/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2311).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Resifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717–2723.
  4. Cram, D. J. & Cram, D. M. (1994). Container Molecules and Their Guests Cambridge: Royal Society of Chemistry.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  6. Diederich, F. (1991). Cyclophanes Cambridge: Royal Society of Chemistry.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Morrison, D. L. & Hoger, S. (1996). Chem. Commun. pp. 2313–2314.
  9. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  10. Padwa, A. (1984). Editor. 1-3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.
  11. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900720X/wn2311sup1.cif

e-65-0o670-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900720X/wn2311Isup2.hkl

e-65-0o670-Isup2.hkl (240.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES