Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o884. doi: 10.1107/S160053680901040X

3-Methoxy­benzaldehyde thio­semi­carbazone

Jian Zhang a, Lin-ping Wu a, Ling-hua Zhuang b, Guo-wei Wang a,*
PMCID: PMC2968893  PMID: 21582593

Abstract

The title compound, C9H11N3OS, was prepared by the reaction of 3-methoxy­benzaldehyde and thio­semicarbazide. The benzyl­idene ring and the thio­semicarbazone fragment are slightly twisted, making a dihedral angle of 14.1 (1)°. A weak intra­molecular N—H⋯N hydrogen bond may influence the conformation of the mol­ecule. Inter­molecular N—H⋯S hydrogen bonds build up a three-dimensional network.

Related literature

For a general background to thio­semicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al. (2003); Chimenti et al.(2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o884-scheme1.jpg

Experimental

Crystal data

  • C9H11N3OS

  • M r = 209.27

  • Monoclinic, Inline graphic

  • a = 11.814 (2) Å

  • b = 5.6760 (11) Å

  • c = 15.248 (3) Å

  • β = 90.29 (3)°

  • V = 1022.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.908, T max = 0.969

  • 1946 measured reflections

  • 1852 independent reflections

  • 1494 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.110

  • S = 1.06

  • 1852 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901040X/dn2432sup1.cif

e-65-0o884-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901040X/dn2432Isup2.hkl

e-65-0o884-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.57 3.370 (2) 156
N3—H3B⋯S1ii 0.86 2.57 3.411 (2) 166
N3—H3A⋯N1 0.86 2.25 2.611 (3) 105

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. We here report the crystal structure of the title compound (I).

The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. This conformation may be induced by the weak intramolecular N-H···N hydrogen bond (Fig. 1, Table 1). All bond lengths are within normal ranges (Allen et al., 1987).

At first glance the molecule is roughly planar with the largest deviation from the mean plane being -0.272 (3) Å at N3, however the benzaldehyde ring and the thiosemicarbazone fragment are twisted with respect to each other making a dihedral angle of 14.1 (1)°.

The molecules are connected by intermolecular N—H···S hydrogen bonds which build up a three dimensional network (Table 1, Fig.2).

Experimental

A mixture of 3-methoxybenzaldehyde (1.36 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 3.79 (t, 3 H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for C(aromatic) and N atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms are represented as smal sphere of arbitrary radii. Intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

Partial packing view showing the N-H···S hydrogen bonds network. H atoms not involved in hydrogen bonding have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) -x+1, y-1/2, -z+1/2]

Crystal data

C9H11N3OS F(000) = 440
Mr = 209.27 Dx = 1.359 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 27 reflections
a = 11.814 (2) Å θ = 1–25°
b = 5.6760 (11) Å µ = 0.29 mm1
c = 15.248 (3) Å T = 293 K
β = 90.29 (3)° Block, colorless
V = 1022.5 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1494 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 25.3°, θmin = 1.7°
ω/2θ scans h = −14→0
Absorption correction: ψ scan (North et al., 1968) k = 0→6
Tmin = 0.908, Tmax = 0.969 l = −18→18
1946 measured reflections 3 standard reflections every 200 reflections
1852 independent reflections intensity decay: 9%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3815P] where P = (Fo2 + 2Fc2)/3
1852 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51511 (6) 1.47619 (10) 0.35880 (3) 0.0442 (2)
O1 0.85492 (14) 0.6407 (3) 0.83956 (9) 0.0496 (5)
N1 0.66878 (15) 1.0213 (3) 0.50804 (11) 0.0369 (4)
N2 0.60984 (16) 1.2149 (3) 0.47967 (11) 0.0407 (5)
H2 0.5936 1.3268 0.5155 0.049*
N3 0.59915 (18) 1.0451 (4) 0.34546 (12) 0.0497 (5)
H3A 0.6324 0.9237 0.3674 0.060*
H3B 0.5800 1.0463 0.2910 0.060*
C1 0.9085 (2) 0.4449 (6) 0.88050 (16) 0.0614 (8)
H1A 0.9862 0.4377 0.8627 0.092*
H1B 0.8706 0.3024 0.8634 0.092*
H1C 0.9049 0.4624 0.9430 0.092*
C2 0.84356 (18) 0.6327 (4) 0.75008 (14) 0.0383 (5)
C3 0.77906 (17) 0.8120 (4) 0.71427 (13) 0.0366 (5)
H3 0.7479 0.9264 0.7505 0.044*
C4 0.76070 (17) 0.8221 (4) 0.62447 (13) 0.0350 (5)
C5 0.8097 (2) 0.6510 (4) 0.57024 (14) 0.0428 (6)
H5 0.7982 0.6566 0.5099 0.051*
C6 0.8741 (2) 0.4764 (4) 0.60621 (16) 0.0503 (6)
H6 0.9071 0.3642 0.5700 0.060*
C7 0.8914 (2) 0.4638 (4) 0.69715 (16) 0.0472 (6)
H7 0.9346 0.3430 0.7214 0.057*
C8 0.69256 (18) 1.0136 (4) 0.58932 (13) 0.0379 (5)
H8 0.6663 1.1311 0.6265 0.045*
C9 0.57769 (17) 1.2279 (4) 0.39499 (13) 0.0332 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0643 (4) 0.0374 (3) 0.0309 (3) 0.0090 (3) −0.0081 (3) 0.0035 (2)
O1 0.0534 (10) 0.0621 (12) 0.0333 (8) 0.0106 (9) −0.0062 (7) 0.0109 (8)
N1 0.0429 (10) 0.0363 (10) 0.0315 (9) 0.0058 (9) −0.0045 (8) 0.0024 (8)
N2 0.0555 (12) 0.0378 (11) 0.0286 (9) 0.0118 (9) −0.0091 (8) −0.0020 (8)
N3 0.0732 (14) 0.0442 (12) 0.0315 (9) 0.0164 (11) −0.0128 (9) −0.0056 (9)
C1 0.0631 (16) 0.077 (2) 0.0444 (14) 0.0194 (15) −0.0057 (12) 0.0225 (14)
C2 0.0335 (11) 0.0471 (14) 0.0343 (11) −0.0031 (10) −0.0041 (9) 0.0072 (10)
C3 0.0338 (11) 0.0429 (13) 0.0331 (11) 0.0020 (10) 0.0002 (9) 0.0024 (10)
C4 0.0331 (11) 0.0380 (12) 0.0340 (11) −0.0035 (10) −0.0043 (9) 0.0045 (10)
C5 0.0526 (14) 0.0413 (14) 0.0346 (11) 0.0013 (11) −0.0061 (10) −0.0020 (10)
C6 0.0622 (16) 0.0432 (14) 0.0454 (13) 0.0109 (12) −0.0051 (12) −0.0084 (11)
C7 0.0517 (14) 0.0401 (13) 0.0497 (14) 0.0076 (11) −0.0091 (11) 0.0061 (11)
C8 0.0389 (11) 0.0439 (13) 0.0309 (11) 0.0039 (10) −0.0012 (9) 0.0002 (10)
C9 0.0372 (11) 0.0357 (12) 0.0266 (10) −0.0032 (10) −0.0024 (8) 0.0015 (9)

Geometric parameters (Å, °)

S1—C9 1.683 (2) C2—C7 1.377 (3)
O1—C2 1.371 (2) C2—C3 1.382 (3)
O1—C1 1.422 (3) C3—C4 1.386 (3)
N1—C8 1.270 (3) C3—H3 0.9300
N1—N2 1.370 (2) C4—C5 1.402 (3)
N2—C9 1.346 (3) C4—C8 1.454 (3)
N2—H2 0.8600 C5—C6 1.363 (3)
N3—C9 1.309 (3) C5—H5 0.9300
N3—H3A 0.8600 C6—C7 1.402 (3)
N3—H3B 0.8600 C6—H6 0.9300
C1—H1A 0.9600 C7—H7 0.9300
C1—H1B 0.9600 C8—H8 0.9300
C1—H1C 0.9600
C2—O1—C1 116.9 (2) C4—C3—H3 119.9
C8—N1—N2 116.44 (18) C3—C4—C5 119.4 (2)
C9—N2—N1 119.16 (18) C3—C4—C8 118.6 (2)
C9—N2—H2 120.4 C5—C4—C8 122.00 (19)
N1—N2—H2 120.4 C6—C5—C4 119.8 (2)
C9—N3—H3A 120.0 C6—C5—H5 120.1
C9—N3—H3B 120.0 C4—C5—H5 120.1
H3A—N3—H3B 120.0 C5—C6—C7 120.9 (2)
O1—C1—H1A 109.5 C5—C6—H6 119.6
O1—C1—H1B 109.5 C7—C6—H6 119.6
H1A—C1—H1B 109.5 C2—C7—C6 119.1 (2)
O1—C1—H1C 109.5 C2—C7—H7 120.5
H1A—C1—H1C 109.5 C6—C7—H7 120.5
H1B—C1—H1C 109.5 N1—C8—C4 120.3 (2)
O1—C2—C7 124.6 (2) N1—C8—H8 119.8
O1—C2—C3 114.8 (2) C4—C8—H8 119.8
C7—C2—C3 120.6 (2) N3—C9—N2 117.1 (2)
C2—C3—C4 120.2 (2) N3—C9—S1 124.11 (16)
C2—C3—H3 119.9 N2—C9—S1 118.78 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···S1i 0.86 2.57 3.370 (2) 156
N3—H3B···S1ii 0.86 2.57 3.411 (2) 166
N3—H3A···N1 0.86 2.25 2.611 (3) 105

Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2432).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev.209, 197–261.
  3. Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem.50, 707–712. [DOI] [PubMed]
  4. Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem.42, 7366–7368. [DOI] [PubMed]
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem.81, 89–97. [DOI] [PubMed]
  7. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  8. Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959. [DOI] [PubMed]
  9. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901040X/dn2432sup1.cif

e-65-0o884-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901040X/dn2432Isup2.hkl

e-65-0o884-Isup2.hkl (89.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES