Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):o767. doi: 10.1107/S1600536809008484

2-Methyl-3-nitro­benzyl cyanide

You-Sheng Chen a,*, Jian-Hong Zhang b
PMCID: PMC2968898  PMID: 21582496

Abstract

The title compound, C9H8N2O, was prepared from o-xylene by nitration, oxidation, hydrolysis, reduction, chlorination and cyanation. There are two mol­ecules in the asymmetric unit with a dihedral angle of 20.15 (7)° between their aromatic rings.

Related literature

For related literature, see: Wang et al. (1999).graphic file with name e-65-0o767-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O2

  • M r = 176.18

  • Monoclinic, Inline graphic

  • a = 17.216 (3) Å

  • b = 7.1950 (14) Å

  • c = 15.746 (3) Å

  • β = 117.10 (3)°

  • V = 1736.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.962, T max = 0.981

  • 3258 measured reflections

  • 3129 independent reflections

  • 2033 reflections with I > 2σ(I)

  • R int = 0.029

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.197

  • S = 1.02

  • 3129 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008484/bq2111sup1.cif

e-65-0o767-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008484/bq2111Isup2.hkl

e-65-0o767-Isup2.hkl (153.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2-Methyl-3-nitrobenzyl cyanide is important chemical material of effective medicines used for Parkinson's disease, which can be useful not only for the treatment of PD, but also for the treatment of RLS. We report here the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Fig.1, where the dash line indicates C—H···O hydrogen bonds (Table 2). The dihedral angle between the two aromatic rings of the molecules in the asymmetric unit is 20.15 (7)°.

Experimental

The title compound, (I) was synthesized according to a literature reported before (Wang, 1999). The crystals were obtained by dissolving (I) (0.35 g, 2.0 mmol) into 25 ml of methanol and evaporating the solvent slowly at room temperature for about 4 d.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom. The O—H and N—H distances were constrained to 0.82Å and 0.86Å and these H atoms were refined as riding, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), which is a asymmetric unit with two molecules, with the atom-labeling scheme. Displacement ellipsoids at the 30% probability level. Dash lines indicate C—H···O hydrogen bonds.

Crystal data

C9H8N2O2 F(000) = 736
Mr = 176.18 Dx = 1.348 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 17.216 (3) Å θ = 10–13°
b = 7.1950 (14) Å µ = 0.10 mm1
c = 15.746 (3) Å T = 298 K
β = 117.10 (3)° Block, yellow
V = 1736.3 (7) Å3 0.40 × 0.30 × 0.20 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer 2033 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
graphite θmax = 25.2°, θmin = 1.3°
ω/2θ scans h = −20→18
Absorption correction: ψ scan (North et al., 1968) k = 0→8
Tmin = 0.962, Tmax = 0.981 l = 0→18
3258 measured reflections 3 standard reflections every 200 reflections
3129 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.06P)2 + 2.6P] where P = (Fo2 + 2Fc2)/3
3129 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4276 (3) 0.7334 (6) 0.1977 (2) 0.1103 (13)
O2 0.3421 (2) 0.9322 (6) 0.0964 (3) 0.1045 (12)
N1 0.7122 (2) 0.5898 (7) −0.0502 (3) 0.0945 (14)
N2 0.4027 (3) 0.8202 (6) 0.1242 (3) 0.0745 (10)
C1 0.6910 (2) 0.6447 (6) 0.0045 (3) 0.0697 (11)
C2 0.6654 (2) 0.7139 (6) 0.0738 (3) 0.0612 (10)
H2A 0.6923 0.8344 0.0959 0.073*
H2B 0.6878 0.6306 0.1282 0.073*
C3 0.5958 (3) 0.7856 (7) 0.2075 (2) 0.0795 (13)
H3A 0.6548 0.7639 0.2189 0.119*
H3B 0.5801 0.6965 0.2425 0.119*
H3C 0.5910 0.9088 0.2281 0.119*
C4 0.5348 (2) 0.7660 (5) 0.1016 (2) 0.0516 (9)
C5 0.4440 (2) 0.7870 (5) 0.0633 (2) 0.0497 (8)
C6 0.3884 (2) 0.7784 (5) −0.0346 (2) 0.0552 (9)
H6A 0.3287 0.7966 −0.0579 0.066*
C7 0.4230 (2) 0.7427 (5) −0.0959 (2) 0.0576 (9)
H7A 0.3867 0.7327 −0.1611 0.069*
C8 0.5115 (2) 0.7220 (5) −0.0609 (2) 0.0511 (8)
H8A 0.5348 0.7000 −0.1029 0.061*
C9 0.5673 (2) 0.7334 (5) 0.0369 (2) 0.0517 (8)
O3 0.0637 (2) 0.2551 (6) 0.2586 (2) 0.1082 (13)
O4 0.1521 (2) 0.0640 (5) 0.2452 (2) 0.1002 (12)
N3 −0.2116 (2) 0.4233 (6) −0.2708 (3) 0.0882 (12)
N4 0.0918 (2) 0.1720 (6) 0.2117 (2) 0.0720 (10)
C10 −0.1920 (2) 0.3586 (6) −0.1986 (3) 0.0605 (10)
C11 −0.1684 (2) 0.2786 (6) −0.1044 (2) 0.0602 (10)
H11A −0.1940 0.1558 −0.1126 0.072*
H11B −0.1932 0.3550 −0.0721 0.072*
C12 −0.1011 (3) 0.1927 (6) 0.0956 (3) 0.0706 (11)
H12A −0.0745 0.1150 0.1511 0.106*
H12B −0.1529 0.1338 0.0487 0.106*
H12C −0.1160 0.3105 0.1129 0.106*
C13 −0.0386 (2) 0.2224 (5) 0.0551 (2) 0.0495 (8)
C14 0.0515 (2) 0.2114 (5) 0.1080 (2) 0.0512 (9)
C15 0.1095 (2) 0.2325 (5) 0.0709 (2) 0.0516 (8)
H15A 0.1693 0.2203 0.1094 0.062*
C16 0.0764 (2) 0.2721 (5) −0.0249 (2) 0.0504 (8)
H16A 0.1139 0.2890 −0.0520 0.060*
C17 −0.0121 (2) 0.2867 (5) −0.0803 (2) 0.0502 (8)
H17A −0.0339 0.3126 −0.1450 0.060*
C18 −0.0704 (2) 0.2634 (5) −0.0415 (2) 0.0458 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.128 (3) 0.158 (4) 0.0600 (19) −0.017 (3) 0.055 (2) −0.003 (2)
O2 0.086 (2) 0.132 (3) 0.116 (3) 0.003 (2) 0.063 (2) −0.023 (2)
N1 0.055 (2) 0.133 (4) 0.092 (3) 0.008 (2) 0.030 (2) −0.020 (3)
N2 0.071 (2) 0.097 (3) 0.060 (2) −0.022 (2) 0.0345 (19) −0.020 (2)
C1 0.0400 (19) 0.083 (3) 0.071 (3) −0.003 (2) 0.0123 (19) −0.007 (2)
C2 0.0457 (19) 0.075 (3) 0.053 (2) −0.0042 (18) 0.0141 (17) −0.0080 (19)
C3 0.075 (3) 0.109 (4) 0.0365 (19) −0.012 (3) 0.0092 (18) −0.013 (2)
C4 0.058 (2) 0.054 (2) 0.0315 (16) −0.0093 (17) 0.0113 (15) −0.0027 (15)
C5 0.058 (2) 0.0488 (19) 0.0431 (18) −0.0086 (16) 0.0241 (16) −0.0080 (16)
C6 0.0438 (18) 0.064 (2) 0.0459 (19) −0.0013 (17) 0.0100 (15) 0.0042 (17)
C7 0.0483 (19) 0.072 (3) 0.0361 (17) 0.0021 (18) 0.0046 (15) 0.0037 (17)
C8 0.0519 (19) 0.063 (2) 0.0360 (17) −0.0003 (17) 0.0175 (15) −0.0011 (16)
C9 0.0432 (18) 0.054 (2) 0.0405 (17) −0.0022 (16) 0.0039 (14) −0.0031 (16)
O3 0.122 (3) 0.158 (4) 0.0441 (16) −0.009 (3) 0.0369 (18) −0.017 (2)
O4 0.093 (2) 0.117 (3) 0.0479 (17) 0.011 (2) −0.0052 (16) 0.0230 (18)
N3 0.059 (2) 0.116 (3) 0.056 (2) 0.012 (2) −0.0029 (17) 0.012 (2)
N4 0.080 (2) 0.088 (3) 0.0327 (16) −0.010 (2) 0.0124 (17) −0.0016 (18)
C10 0.0376 (18) 0.074 (3) 0.051 (2) 0.0045 (18) 0.0044 (16) −0.001 (2)
C11 0.0456 (19) 0.072 (3) 0.052 (2) 0.0026 (18) 0.0125 (16) −0.0015 (19)
C12 0.072 (3) 0.091 (3) 0.060 (2) −0.009 (2) 0.041 (2) 0.001 (2)
C13 0.056 (2) 0.0479 (19) 0.0421 (18) −0.0011 (16) 0.0200 (16) −0.0057 (15)
C14 0.057 (2) 0.062 (2) 0.0262 (15) −0.0049 (17) 0.0112 (14) 0.0005 (15)
C15 0.0441 (18) 0.056 (2) 0.0408 (17) −0.0026 (16) 0.0069 (15) −0.0022 (16)
C16 0.0410 (17) 0.067 (2) 0.0411 (18) −0.0052 (16) 0.0167 (14) −0.0049 (17)
C17 0.0472 (18) 0.063 (2) 0.0314 (16) −0.0031 (16) 0.0099 (14) 0.0006 (15)
C18 0.0391 (16) 0.055 (2) 0.0357 (16) −0.0007 (15) 0.0103 (14) −0.0028 (15)

Geometric parameters (Å, °)

O1—N2 1.209 (5) O3—N4 1.209 (5)
O2—N2 1.231 (5) O4—N4 1.209 (5)
N1—C1 1.148 (5) N3—C10 1.129 (5)
N2—C5 1.451 (5) N4—C14 1.483 (4)
C1—C2 1.440 (6) C10—C11 1.465 (5)
C2—C9 1.522 (5) C11—C18 1.521 (4)
C2—H2A 0.9700 C11—H11A 0.9700
C2—H2B 0.9700 C11—H11B 0.9700
C3—C4 1.519 (5) C12—C13 1.492 (5)
C3—H3A 0.9600 C12—H12A 0.9600
C3—H3B 0.9600 C12—H12B 0.9600
C3—H3C 0.9600 C12—H12C 0.9600
C4—C9 1.388 (5) C13—C14 1.389 (5)
C4—C5 1.404 (5) C13—C18 1.394 (4)
C5—C6 1.397 (5) C14—C15 1.375 (5)
C6—C7 1.370 (5) C15—C16 1.378 (4)
C6—H6A 0.9300 C15—H15A 0.9300
C7—C8 1.371 (5) C16—C17 1.372 (4)
C7—H7A 0.9300 C16—H16A 0.9300
C8—C9 1.396 (4) C17—C18 1.402 (4)
C8—H8A 0.9300 C17—H17A 0.9300
O1—N2—O2 123.5 (4) O4—N4—O3 123.7 (4)
O1—N2—C5 118.8 (4) O4—N4—C14 118.8 (4)
O2—N2—C5 117.7 (4) O3—N4—C14 117.5 (4)
N1—C1—C2 179.4 (4) N3—C10—C11 178.2 (4)
C1—C2—C9 114.4 (3) C10—C11—C18 113.6 (3)
C1—C2—H2A 108.7 C10—C11—H11A 108.8
C9—C2—H2A 108.7 C18—C11—H11A 108.8
C1—C2—H2B 108.7 C10—C11—H11B 108.8
C9—C2—H2B 108.7 C18—C11—H11B 108.8
H2A—C2—H2B 107.6 H11A—C11—H11B 107.7
C4—C3—H3A 109.5 C13—C12—H12A 109.5
C4—C3—H3B 109.5 C13—C12—H12B 109.5
H3A—C3—H3B 109.5 H12A—C12—H12B 109.5
C4—C3—H3C 109.5 C13—C12—H12C 109.5
H3A—C3—H3C 109.5 H12A—C12—H12C 109.5
H3B—C3—H3C 109.5 H12B—C12—H12C 109.5
C9—C4—C5 116.4 (3) C14—C13—C18 116.1 (3)
C9—C4—C3 120.9 (3) C14—C13—C12 124.2 (3)
C5—C4—C3 122.6 (3) C18—C13—C12 119.7 (3)
C6—C5—C4 122.6 (3) C15—C14—C13 124.6 (3)
C6—C5—N2 116.2 (3) C15—C14—N4 115.0 (3)
C4—C5—N2 121.2 (3) C13—C14—N4 120.3 (3)
C7—C6—C5 119.1 (3) C14—C15—C16 117.9 (3)
C7—C6—H6A 120.5 C14—C15—H15A 121.0
C5—C6—H6A 120.5 C16—C15—H15A 121.0
C6—C7—C8 119.8 (3) C17—C16—C15 119.8 (3)
C6—C7—H7A 120.1 C17—C16—H16A 120.1
C8—C7—H7A 120.1 C15—C16—H16A 120.1
C7—C8—C9 121.1 (3) C16—C17—C18 121.5 (3)
C7—C8—H8A 119.4 C16—C17—H17A 119.3
C9—C8—H8A 119.4 C18—C17—H17A 119.3
C4—C9—C8 121.0 (3) C13—C18—C17 119.9 (3)
C4—C9—C2 118.9 (3) C13—C18—C11 119.5 (3)
C8—C9—C2 120.1 (3) C17—C18—C11 120.6 (3)
N1—C1—C2—C9 173 (100) N3—C10—C11—C18 −131 (15)
C9—C4—C5—C6 −0.8 (5) C18—C13—C14—C15 −2.0 (5)
C3—C4—C5—C6 176.6 (4) C12—C13—C14—C15 177.8 (4)
C9—C4—C5—N2 179.5 (3) C18—C13—C14—N4 178.7 (3)
C3—C4—C5—N2 −3.0 (6) C12—C13—C14—N4 −1.2 (5)
O1—N2—C5—C6 138.3 (4) O4—N4—C14—C15 −41.7 (5)
O2—N2—C5—C6 −39.6 (5) O3—N4—C14—C15 136.1 (4)
O1—N2—C5—C4 −42.1 (5) O4—N4—C14—C13 137.5 (4)
O2—N2—C5—C4 140.0 (4) O3—N4—C14—C13 −44.7 (5)
C4—C5—C6—C7 1.9 (6) C13—C14—C15—C16 1.8 (6)
N2—C5—C6—C7 −178.4 (4) N4—C14—C15—C16 −179.0 (3)
C5—C6—C7—C8 −2.1 (6) C14—C15—C16—C17 −0.9 (5)
C6—C7—C8—C9 1.1 (6) C15—C16—C17—C18 0.5 (5)
C5—C4—C9—C8 −0.2 (5) C14—C13—C18—C17 1.4 (5)
C3—C4—C9—C8 −177.7 (4) C12—C13—C18—C17 −178.2 (3)
C5—C4—C9—C2 178.6 (3) C14—C13—C18—C11 −179.8 (3)
C3—C4—C9—C2 1.1 (5) C12—C13—C18—C11 0.6 (5)
C7—C8—C9—C4 0.0 (6) C16—C17—C18—C13 −0.7 (5)
C7—C8—C9—C2 −178.7 (3) C16—C17—C18—C11 −179.5 (3)
C1—C2—C9—C4 168.4 (4) C10—C11—C18—C13 168.2 (3)
C1—C2—C9—C8 −12.9 (5) C10—C11—C18—C17 −13.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O1 0.96 2.40 2.852 (8) 108
C12—H12A···O3 0.96 2.42 2.864 (6) 108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2111).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, S. Q., Deng, X. Y. & Wang, S. J. (1999). Shenyang Yaoke Daxue Xuebao, 17, 103–104.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008484/bq2111sup1.cif

e-65-0o767-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008484/bq2111Isup2.hkl

e-65-0o767-Isup2.hkl (153.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES