Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o789–o790. doi: 10.1107/S1600536809007570

9-[(2,6-Dimethoxy­phen­oxy)carbon­yl]-10-methyl­acridinium trifluoro­methane­sulfonate

Karol Krzymiński a, Damian Trzybiński a, Artur Sikorski a, Jerzy Błażejowski a,*
PMCID: PMC2968902  PMID: 21582514

Abstract

In the crystal structure of the title compound, C23H20NO4 +·CF3SO3 , the cations are linked through C—H⋯O, C—H⋯π and π–π inter­actions [centroid-centroid distances = 3.641 (2) and 3.885 (2) Å]. The cation and the anion are held together by C—H⋯O and S—O⋯π inter­actions. The acridine ring system and the benzene ring in the cation are oriented at a dihedral angle of 8.7 (1)°. The carb­oxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton.

Related literature

For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Rak et al. (1999); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2008). For mol­ecular inter­actions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Sato (1996).graphic file with name e-65-0o789-scheme1.jpg

Experimental

Crystal data

  • C23H20NO4 +·CF3SO3

  • M r = 523.48

  • Monoclinic, Inline graphic

  • a = 11.6803 (4) Å

  • b = 14.7434 (5) Å

  • c = 13.6286 (5) Å

  • β = 93.462 (4)°

  • V = 2342.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.55 × 0.30 × 0.02 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.911, T max = 0.995

  • 20680 measured reflections

  • 4160 independent reflections

  • 2274 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 0.87

  • 4160 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007570/is2390sup1.cif

e-65-0o789-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007570/is2390Isup2.hkl

e-65-0o789-Isup2.hkl (203.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O30i 0.93 2.57 3.449 (3) 158
C4—H4⋯O31i 0.93 2.58 3.352 (3) 141
C7—H7⋯O32ii 0.93 2.54 3.427 (3) 159
C27—H27C⋯O17iii 0.96 2.46 3.371 (3) 159
C25—H25CCg4iv 0.96 2.98 3.845 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg4 is the centroid of the C18–C23 ring.

Table 2. S—O⋯π Interactions (Å,°).

X I J IJ XJ XIJ
S29 O32 Cg1v 3.178 (2) 3.757 (2) 103

Symmetry codes: (v) –x+1, –y+1, –z+1. Cg1 is the centroid of the C9/N10/C11–C14 ring.

Table 3. π–π Interactions (Å,°).

I J CgICgJ Dihedral angle CgIPerp CgJPerp CgIOffset CgJOffset
1 4ii 3.641 (2) 5.31 (10) 3.416 (2) 3.492 (2) 0.767 (2) 1.031 (2)
2 4ii 3.885 (2) 6.74 (11) 3.666 (2) 3.491 (2) 1.286 (2) 1.705 (2)

Symmetry code: (ii) Inline graphic. Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI Perp and CgJ Perp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgI Offset and CgJ Offset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

Phenyl 10-alkylacridinium-9-carboxylates have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer & Jacquemijns, 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the convertion of the rest of molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). Continuing our investigations onto the above mentioned effect, we synthesized the compound containing two methoxy groups in the phenyl fragment. Here, we present its structure. Methoxy groups, which possess electron-attractive features, may influence the stability and chemiluminogenic ability of the compound investigated.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2008). With respective average deviations from planarity of 0.037 (3) Å and 0.010 (3) Å, the acridine and benzene ring systems in the cation are oriented at 8.7 (1)°. The carboxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are either parallel or inclined at an angle of 10.9 (1)° in the lattice.

In the crystal structure, the cations are linked through C—H···O (Table 1, Fig. 2), C—H···π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, and the cations and anions by C—H···O (Table 1, Fig. 2) and S—O···π (Table 2, Fig. 2) interactions. The C—H···O (Steiner, 1999; Bianchi et al., 2004) interactions are of the hydrogen-bond type. The C—H···π (Takahashi et al., 2001) and S—O···π (Dorn et al., 2005) interactions should be of an attractive nature, like the π–π contacts (Hunter et al., 2001). The crystal structure is stabilized by a network of the aforementioned short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

2,6-Dimethoxyphenylacridine-9-carboxylate was prepared by heating anhydrous acridine-9-carboxylic acid with thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-dimethoxyphenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine (1.5 molar excess) and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 - 25 h). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2,6-dimethoxyphenylacridine-9-carboxylate thus obtained was subsequently dissolved in anhydrous dichloromethane and treated with a fivefold molar excess of methyl triluoromethanesulfonate dissolved in the same solvent (under an Ar atmosphere at room temperature for 4 h). The crude salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 42%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 243–245 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure, the C—H···O interactions are represented by dashed lines, the C—H···π, S—O···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 1/2, z - 1/2; (iii) x, -y + 1/2, z + 1/2; (iv) -x + 2, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.]

Crystal data

C23H20NO4+·CF3SO3 F(000) = 1080
Mr = 523.48 Dx = 1.484 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybc Cell parameters from 6747 reflections
a = 11.6803 (4) Å θ = 3.1–29.2°
b = 14.7434 (5) Å µ = 0.21 mm1
c = 13.6286 (5) Å T = 295 K
β = 93.462 (4)° Plate, yellow
V = 2342.66 (14) Å3 0.55 × 0.30 × 0.02 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 4160 independent reflections
Radiation source: Enhanced (Mo) X-ray Source 2274 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1°, θmin = 3.1°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −17→17
Tmin = 0.911, Tmax = 0.995 l = −15→16
20680 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0672P)2] where P = (Fo2 + 2Fc2)/3
4160 reflections (Δ/σ)max = 0.001
328 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7814 (2) 0.40388 (17) 0.39746 (18) 0.0638 (6)
H1 0.8256 0.3737 0.4462 0.077*
C2 0.7685 (2) 0.49461 (18) 0.4029 (2) 0.0758 (8)
H2 0.8031 0.5265 0.4556 0.091*
C3 0.7034 (2) 0.54073 (18) 0.3296 (2) 0.0732 (8)
H3 0.6953 0.6033 0.3341 0.088*
C4 0.6517 (2) 0.49643 (17) 0.2521 (2) 0.0651 (7)
H4 0.6096 0.5289 0.2038 0.078*
C5 0.5619 (2) 0.2128 (2) 0.08150 (18) 0.0665 (7)
H5 0.5216 0.2437 0.0310 0.080*
C6 0.5684 (2) 0.1217 (2) 0.0792 (2) 0.0759 (8)
H6 0.5322 0.0908 0.0265 0.091*
C7 0.6277 (2) 0.07213 (19) 0.1532 (2) 0.0748 (7)
H7 0.6284 0.0091 0.1505 0.090*
C8 0.6843 (2) 0.11584 (17) 0.22920 (18) 0.0622 (6)
H8 0.7255 0.0828 0.2776 0.075*
C9 0.73852 (17) 0.26032 (15) 0.31071 (15) 0.0471 (6)
N10 0.61009 (14) 0.35392 (13) 0.16713 (13) 0.0508 (5)
C11 0.72823 (17) 0.35398 (15) 0.31827 (15) 0.0497 (6)
C12 0.66127 (18) 0.40128 (15) 0.24392 (16) 0.0503 (6)
C13 0.68078 (18) 0.21248 (15) 0.23483 (16) 0.0495 (6)
C14 0.61625 (18) 0.26140 (16) 0.16052 (16) 0.0514 (6)
C15 0.8199 (2) 0.21059 (14) 0.38169 (16) 0.0523 (6)
O16 0.77183 (12) 0.18961 (10) 0.46502 (11) 0.0556 (4)
O17 0.91548 (15) 0.19252 (14) 0.36460 (13) 0.0862 (6)
C18 0.84322 (18) 0.14411 (16) 0.53585 (15) 0.0512 (6)
C19 0.84232 (19) 0.05032 (16) 0.53766 (17) 0.0548 (6)
C20 0.9070 (2) 0.00594 (18) 0.61157 (19) 0.0657 (7)
H20 0.9073 −0.0570 0.6151 0.079*
C21 0.9708 (2) 0.0567 (2) 0.67943 (19) 0.0742 (8)
H21 1.0134 0.0270 0.7296 0.089*
C22 0.9739 (2) 0.1498 (2) 0.67584 (17) 0.0700 (7)
H22 1.0185 0.1823 0.7224 0.084*
C23 0.9101 (2) 0.19452 (17) 0.60234 (16) 0.0569 (6)
O24 0.77711 (14) 0.01014 (11) 0.46366 (12) 0.0674 (5)
C25 0.7774 (2) −0.08702 (17) 0.4597 (2) 0.0771 (8)
H25A 0.7387 −0.1068 0.3993 0.116*
H25B 0.7386 −0.1108 0.5143 0.116*
H25C 0.8551 −0.1086 0.4629 0.116*
O26 0.90647 (16) 0.28607 (12) 0.58923 (12) 0.0754 (5)
C27 0.9977 (3) 0.3383 (2) 0.6341 (2) 0.0978 (10)
H27A 0.9918 0.3998 0.6111 0.147*
H27B 1.0698 0.3132 0.6172 0.147*
H27C 0.9932 0.3372 0.7042 0.147*
C28 0.5417 (2) 0.40504 (19) 0.09069 (19) 0.0798 (8)
H28A 0.5904 0.4472 0.0593 0.120*
H28B 0.4816 0.4376 0.1205 0.120*
H28C 0.5086 0.3635 0.0426 0.120*
S29 0.62429 (6) 0.72700 (4) 0.67537 (5) 0.0605 (2)
O30 0.6575 (2) 0.73286 (15) 0.77722 (13) 0.1141 (8)
O31 0.59056 (15) 0.81084 (11) 0.62945 (13) 0.0719 (5)
O32 0.55268 (15) 0.65261 (13) 0.64848 (15) 0.0913 (6)
C33 0.7559 (2) 0.70003 (18) 0.6202 (2) 0.0687 (7)
F34 0.79921 (14) 0.62064 (11) 0.65070 (14) 0.1050 (6)
F35 0.83549 (13) 0.76166 (12) 0.64108 (16) 0.1158 (6)
F36 0.74067 (16) 0.69624 (13) 0.52297 (12) 0.1107 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0710 (16) 0.0497 (17) 0.0707 (15) −0.0017 (13) 0.0038 (13) 0.0012 (13)
C2 0.095 (2) 0.0490 (18) 0.0841 (19) −0.0063 (15) 0.0125 (16) −0.0089 (14)
C3 0.0845 (19) 0.0378 (15) 0.099 (2) 0.0033 (14) 0.0219 (17) 0.0021 (16)
C4 0.0616 (16) 0.0456 (17) 0.0894 (19) 0.0057 (12) 0.0156 (14) 0.0186 (14)
C5 0.0560 (15) 0.071 (2) 0.0721 (17) −0.0045 (14) −0.0009 (12) 0.0024 (15)
C6 0.0752 (18) 0.065 (2) 0.0870 (19) −0.0106 (15) −0.0002 (15) −0.0110 (16)
C7 0.0789 (18) 0.0448 (16) 0.101 (2) −0.0049 (14) 0.0100 (16) −0.0090 (16)
C8 0.0645 (15) 0.0417 (16) 0.0806 (17) 0.0021 (12) 0.0055 (13) 0.0037 (13)
C9 0.0448 (12) 0.0396 (14) 0.0578 (13) 0.0018 (10) 0.0112 (11) 0.0103 (11)
N10 0.0406 (10) 0.0473 (13) 0.0649 (12) 0.0041 (9) 0.0070 (9) 0.0127 (10)
C11 0.0483 (13) 0.0400 (14) 0.0616 (14) −0.0005 (11) 0.0109 (11) 0.0071 (12)
C12 0.0464 (13) 0.0385 (15) 0.0675 (15) 0.0019 (11) 0.0170 (12) 0.0087 (12)
C13 0.0456 (12) 0.0412 (15) 0.0628 (14) −0.0006 (11) 0.0114 (11) 0.0057 (11)
C14 0.0410 (12) 0.0483 (15) 0.0658 (15) 0.0006 (11) 0.0104 (11) 0.0082 (12)
C15 0.0512 (15) 0.0434 (15) 0.0634 (15) 0.0005 (11) 0.0114 (12) 0.0072 (11)
O16 0.0543 (9) 0.0517 (10) 0.0617 (9) 0.0094 (7) 0.0104 (8) 0.0111 (8)
O17 0.0573 (11) 0.1193 (17) 0.0841 (12) 0.0260 (10) 0.0210 (9) 0.0410 (11)
C18 0.0500 (13) 0.0538 (16) 0.0505 (13) 0.0100 (12) 0.0085 (11) 0.0076 (12)
C19 0.0551 (14) 0.0506 (16) 0.0596 (15) 0.0053 (12) 0.0115 (12) 0.0081 (13)
C20 0.0700 (16) 0.0562 (17) 0.0721 (17) 0.0092 (14) 0.0144 (14) 0.0178 (14)
C21 0.0784 (19) 0.081 (2) 0.0628 (16) 0.0142 (16) 0.0023 (14) 0.0194 (16)
C22 0.0726 (17) 0.081 (2) 0.0564 (15) 0.0022 (15) 0.0027 (13) −0.0005 (14)
C23 0.0622 (15) 0.0554 (17) 0.0542 (14) 0.0075 (13) 0.0131 (13) 0.0059 (13)
O24 0.0732 (11) 0.0490 (11) 0.0794 (11) −0.0003 (9) −0.0007 (9) 0.0070 (9)
C25 0.0817 (19) 0.0502 (18) 0.1008 (19) −0.0032 (14) 0.0178 (15) −0.0019 (15)
O26 0.0934 (13) 0.0544 (12) 0.0776 (11) −0.0019 (10) −0.0010 (10) −0.0035 (9)
C27 0.126 (3) 0.083 (2) 0.0849 (19) −0.028 (2) 0.0082 (18) −0.0061 (17)
C28 0.0725 (18) 0.074 (2) 0.0911 (18) 0.0139 (15) −0.0125 (14) 0.0230 (16)
S29 0.0693 (4) 0.0491 (4) 0.0639 (4) −0.0018 (3) 0.0105 (3) 0.0018 (3)
O30 0.183 (2) 0.1048 (17) 0.0545 (11) 0.0155 (16) 0.0050 (12) 0.0030 (11)
O31 0.0811 (12) 0.0492 (11) 0.0853 (11) 0.0124 (9) 0.0036 (9) 0.0049 (9)
O32 0.0713 (12) 0.0602 (13) 0.1427 (16) −0.0205 (10) 0.0087 (11) 0.0027 (12)
C33 0.0625 (17) 0.0533 (17) 0.089 (2) −0.0042 (14) −0.0076 (14) 0.0083 (14)
F34 0.0808 (11) 0.0678 (11) 0.1654 (16) 0.0192 (9) −0.0016 (10) 0.0175 (11)
F35 0.0617 (10) 0.0977 (13) 0.1853 (18) −0.0272 (10) −0.0152 (10) 0.0345 (12)
F36 0.1302 (15) 0.1217 (16) 0.0842 (12) 0.0248 (11) 0.0384 (11) −0.0103 (10)

Geometric parameters (Å, °)

C1—C2 1.349 (3) C18—C23 1.377 (3)
C1—C11 1.418 (3) C18—C19 1.383 (3)
C1—H1 0.9300 C19—O24 1.362 (3)
C2—C3 1.396 (4) C19—C20 1.387 (3)
C2—H2 0.9300 C20—C21 1.374 (3)
C3—C4 1.353 (3) C20—H20 0.9300
C3—H3 0.9300 C21—C22 1.374 (4)
C4—C12 1.412 (3) C21—H21 0.9300
C4—H4 0.9300 C22—C23 1.380 (3)
C5—C6 1.345 (4) C22—H22 0.9300
C5—C14 1.412 (3) C23—O26 1.362 (3)
C5—H5 0.9300 O24—C25 1.433 (3)
C6—C7 1.396 (4) C25—H25A 0.9600
C6—H6 0.9300 C25—H25B 0.9600
C7—C8 1.357 (3) C25—H25C 0.9600
C7—H7 0.9300 O26—C27 1.423 (3)
C8—C13 1.428 (3) C27—H27A 0.9600
C8—H8 0.9300 C27—H27B 0.9600
C9—C11 1.390 (3) C27—H27C 0.9600
C9—C13 1.392 (3) C28—H28A 0.9600
C9—C15 1.506 (3) C28—H28B 0.9600
N10—C12 1.366 (3) C28—H28C 0.9600
N10—C14 1.369 (3) S29—O32 1.4142 (19)
N10—C28 1.480 (3) S29—O30 1.421 (2)
C11—C12 1.424 (3) S29—O31 1.4300 (17)
C13—C14 1.422 (3) S29—C33 1.796 (3)
C15—O17 1.184 (2) C33—F35 1.319 (3)
C15—O16 1.334 (2) C33—F36 1.327 (3)
O16—C18 1.407 (2) C33—F34 1.332 (3)
C2—C1—C11 120.8 (2) C19—C18—O16 118.9 (2)
C2—C1—H1 119.6 O24—C19—C18 115.2 (2)
C11—C1—H1 119.6 O24—C19—C20 126.1 (2)
C1—C2—C3 120.1 (3) C18—C19—C20 118.7 (2)
C1—C2—H2 120.0 C21—C20—C19 118.8 (2)
C3—C2—H2 120.0 C21—C20—H20 120.6
C4—C3—C2 121.5 (2) C19—C20—H20 120.6
C4—C3—H3 119.3 C20—C21—C22 122.3 (2)
C2—C3—H3 119.3 C20—C21—H21 118.8
C3—C4—C12 120.5 (2) C22—C21—H21 118.8
C3—C4—H4 119.7 C21—C22—C23 119.3 (3)
C12—C4—H4 119.7 C21—C22—H22 120.4
C6—C5—C14 120.1 (2) C23—C22—H22 120.4
C6—C5—H5 119.9 O26—C23—C18 115.9 (2)
C14—C5—H5 119.9 O26—C23—C22 125.5 (2)
C5—C6—C7 122.1 (3) C18—C23—C22 118.7 (2)
C5—C6—H6 118.9 C19—O24—C25 117.39 (19)
C7—C6—H6 118.9 O24—C25—H25A 109.5
C8—C7—C6 120.0 (2) O24—C25—H25B 109.5
C8—C7—H7 120.0 H25A—C25—H25B 109.5
C6—C7—H7 120.0 O24—C25—H25C 109.5
C7—C8—C13 120.0 (2) H25A—C25—H25C 109.5
C7—C8—H8 120.0 H25B—C25—H25C 109.5
C13—C8—H8 120.0 C23—O26—C27 117.6 (2)
C11—C9—C13 121.2 (2) O26—C27—H27A 109.5
C11—C9—C15 119.3 (2) O26—C27—H27B 109.5
C13—C9—C15 119.3 (2) H27A—C27—H27B 109.5
C12—N10—C14 122.52 (18) O26—C27—H27C 109.5
C12—N10—C28 118.1 (2) H27A—C27—H27C 109.5
C14—N10—C28 119.28 (19) H27B—C27—H27C 109.5
C9—C11—C1 122.4 (2) N10—C28—H28A 109.5
C9—C11—C12 118.7 (2) N10—C28—H28B 109.5
C1—C11—C12 118.9 (2) H28A—C28—H28B 109.5
N10—C12—C4 122.4 (2) N10—C28—H28C 109.5
N10—C12—C11 119.4 (2) H28A—C28—H28C 109.5
C4—C12—C11 118.2 (2) H28B—C28—H28C 109.5
C9—C13—C14 119.0 (2) O32—S29—O30 115.00 (13)
C9—C13—C8 122.1 (2) O32—S29—O31 114.45 (12)
C14—C13—C8 118.9 (2) O30—S29—O31 115.25 (12)
N10—C14—C5 122.2 (2) O32—S29—C33 103.15 (12)
N10—C14—C13 119.1 (2) O30—S29—C33 103.43 (14)
C5—C14—C13 118.7 (2) O31—S29—C33 103.20 (11)
O17—C15—O16 124.5 (2) F35—C33—F36 107.1 (2)
O17—C15—C9 123.3 (2) F35—C33—F34 106.8 (2)
O16—C15—C9 112.20 (19) F36—C33—F34 107.5 (2)
C15—O16—C18 115.60 (16) F35—C33—S29 111.5 (2)
C23—C18—C19 122.2 (2) F36—C33—S29 111.15 (18)
C23—C18—O16 118.9 (2) F34—C33—S29 112.49 (19)
C11—C1—C2—C3 −0.7 (4) C8—C13—C14—C5 −2.7 (3)
C1—C2—C3—C4 0.2 (4) C11—C9—C15—O17 −94.4 (3)
C2—C3—C4—C12 0.8 (4) C13—C9—C15—O17 81.4 (3)
C14—C5—C6—C7 0.1 (4) C11—C9—C15—O16 85.7 (2)
C5—C6—C7—C8 −2.1 (4) C13—C9—C15—O16 −98.5 (2)
C6—C7—C8—C13 1.7 (4) O17—C15—O16—C18 1.0 (3)
C13—C9—C11—C1 176.74 (19) C9—C15—O16—C18 −179.09 (18)
C15—C9—C11—C1 −7.6 (3) C15—O16—C18—C23 88.2 (2)
C13—C9—C11—C12 −2.9 (3) C15—O16—C18—C19 −93.1 (2)
C15—C9—C11—C12 172.79 (19) C23—C18—C19—O24 −176.27 (18)
C2—C1—C11—C9 −179.3 (2) O16—C18—C19—O24 5.0 (3)
C2—C1—C11—C12 0.3 (3) C23—C18—C19—C20 2.9 (3)
C14—N10—C12—C4 −177.94 (19) O16—C18—C19—C20 −175.80 (18)
C28—N10—C12—C4 −0.5 (3) O24—C19—C20—C21 178.2 (2)
C14—N10—C12—C11 2.9 (3) C18—C19—C20—C21 −0.9 (3)
C28—N10—C12—C11 −179.61 (19) C19—C20—C21—C22 −0.9 (4)
C3—C4—C12—N10 179.7 (2) C20—C21—C22—C23 0.7 (4)
C3—C4—C12—C11 −1.1 (3) C19—C18—C23—O26 177.12 (18)
C9—C11—C12—N10 −0.6 (3) O16—C18—C23—O26 −4.2 (3)
C1—C11—C12—N10 179.75 (18) C19—C18—C23—C22 −3.1 (3)
C9—C11—C12—C4 −179.77 (18) O16—C18—C23—C22 175.59 (18)
C1—C11—C12—C4 0.6 (3) C21—C22—C23—O26 −179.0 (2)
C11—C9—C13—C14 4.1 (3) C21—C22—C23—C18 1.3 (3)
C15—C9—C13—C14 −171.59 (19) C18—C19—O24—C25 177.29 (18)
C11—C9—C13—C8 −175.94 (19) C20—C19—O24—C25 −1.8 (3)
C15—C9—C13—C8 8.4 (3) C18—C23—O26—C27 −160.7 (2)
C7—C8—C13—C9 −179.3 (2) C22—C23—O26—C27 19.5 (3)
C7—C8—C13—C14 0.7 (3) O32—S29—C33—F35 −177.69 (18)
C12—N10—C14—C5 179.21 (18) O30—S29—C33—F35 −57.6 (2)
C28—N10—C14—C5 1.8 (3) O31—S29—C33—F35 62.9 (2)
C12—N10—C14—C13 −1.7 (3) O32—S29—C33—F36 62.8 (2)
C28—N10—C14—C13 −179.15 (19) O30—S29—C33—F36 −177.05 (19)
C6—C5—C14—N10 −178.6 (2) O31—S29—C33—F36 −56.6 (2)
C6—C5—C14—C13 2.3 (3) O32—S29—C33—F34 −57.7 (2)
C9—C13—C14—N10 −1.8 (3) O30—S29—C33—F34 62.4 (2)
C8—C13—C14—N10 178.23 (18) O31—S29—C33—F34 −177.18 (18)
C9—C13—C14—C5 177.31 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O30i 0.93 2.57 3.449 (3) 158
C4—H4···O31i 0.93 2.58 3.352 (3) 141
C7—H7···O32ii 0.93 2.54 3.427 (3) 159
C27—H27C···O17iii 0.96 2.46 3.371 (3) 159
C25—H25C···Cg4iv 0.96 2.98 3.845 (3) 150

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+2, −y, −z+1.

Table 2 S–O···π Interactions (Å,°)

X I J I···J X···J X—I···J
S29 O31 Cg3v 3.968 (2) 4.111 (2) 85
S29 O32 Cg1v 3.178 (2) 3.757 (2) 103
S29 O32 Cg2v 3.512 (2) 4.741 (2) 145

Symmetry codes: (v) –x+1, –y+1, –z+1.Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.

Table 3 π–π Interactions (Å,°)

I J CgI···CgJ Dihedral angle CgIPerp CgJPerp CgIOffset CgJOffset
1 4ii 3.641 (2) 5.31 (10) 3.416 (2) 3.492 (2) 0.767 (2) 1.031 (2)
2 4ii 3.885 (2) 6.74 (11) 3.666 (2) 3.491 (2) 1.286 (2) 1.705 (2)

Symmetry code: (ii) x, –y+1/2, z–1/2.Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2390).

References

  1. Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett.14, 2313–2317. [DOI] [PubMed]
  2. Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611. [DOI] [PubMed]
  3. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  4. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  8. Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [DOI] [PubMed]
  9. Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. [DOI] [PMC free article] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst.D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Steiner, T. (1999). Chem. Commun. pp. 313–314.
  14. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  15. Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007570/is2390sup1.cif

e-65-0o789-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007570/is2390Isup2.hkl

e-65-0o789-Isup2.hkl (203.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES