Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o805. doi: 10.1107/S160053680900957X

4-(4-Ethoxy­benz­yl)-1,3-oxazolidin-2-one

Hong-Yong Wang a, Min-Hao Xie a,*, Shi-Neng Luo a, Yong-Jun He a, Pei Zou a
PMCID: PMC2968907  PMID: 21582528

Abstract

In the title compound, C12H15NO3, the ethoxy­benzyl ring plane forms a dihedral angle of 60.3 (4)° with the mean plane of the oxazolidine ring. The mol­ecules are linked through N—H⋯O hydrogen bonds into a chain running in the b direction.

Related literature

For background literature, see: Chrzanowska & Rozwadowska (2004); Rozwadowska (1994); Scott & Williams (2002); Tussetschläger et al. (2007).graphic file with name e-65-0o805-scheme1.jpg

Experimental

Crystal data

  • C12H15NO3

  • M r = 221.25

  • Orthorhombic, Inline graphic

  • a = 5.7960 (12) Å

  • b = 9.924 (2) Å

  • c = 20.209 (4) Å

  • V = 1162.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989) T min = 0.973, T max = 0.991

  • 2427 measured reflections

  • 1246 independent reflections

  • 904 reflections with I > 2σ(I)

  • R int = 0.043

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.150

  • S = 1.01

  • 1246 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900957X/pv2144sup1.cif

e-65-0o805-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900957X/pv2144Isup2.hkl

e-65-0o805-Isup2.hkl (61.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O3i 0.86 1.99 2.845 (4) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

Tetrahydroisoquinoline alkaloids have received much interest because of their tremendous structural diversity and broad spectrum of biological and pharmaceutical activities (Rozwadowska, 1994; Scott & Williams, 2002; Chrzanowska & Rozwadowska, 2004). As part of our own work in this area, we prepared the title compound, (I), as an intermediate in the synthesis of tyrosine-derived N-[(phenylsulfonyl)alkyl]oxazolidinones as an extension of Petrini's methodology (Tussetschläger, et al., 2007). The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the mean planes of the C1 - C9/O1 ethoxybenzyl ring and the C10/N/C12/O2/C11/O3 oxazolidine ring is 60.3 (4)°. In the crystal structure, adjacent molecules are linked through N—H···O type hydrogen-bonding interactions resulting in chains running in the b direction (Table 1). The structure also contains non-classical hydrogen bonds of the type C—H···O linking the molecules into chains along the a-axis.

Experimental

Sodium borohydride was added to a solution of 2-(tert-butoxycarbonylamino)-3-(4-ethoxyphenyl)propanoic acid (3.09 g, 10 mmol) in tetrahydrofuran (50 ml). Then methanol (5 ml) was slowly added to the resulting suspension and the temperature kept below 243 K. After the mixture was stirred for 1 h at room temperature, the excess reagent was destroyed by addition of acetic acid (1 ml). The solvent was evaporated, and the oily residue was diluted with water (50 ml) and extracted three times with ethyl acetate (25 ml) each. The combined organic extracts were wash with brine, dried with sodium sulfate, and concentrated in vacuo. The crude tert-butyl 1-(4-ethoxyphenyl)-3- hydroxypropan-2-ylcarbamate was obtained 2.7 g. Then tert-butyl 1- (4-ethoxyphenyl)-3-hydroxypropan-2-ylcarbamate (2.7 g) in THF (50 ml) was added to a suspension of sodium hydride (0.92 g, 23 mmol) in THF (120 ml) over a period of 20 min, stirred for 12 h, then quenched with a saturated solution of aqueous ammonium chloride (45 ml). The reaction mixture was then extracted three times with ethyl acetate (25 ml) each, the organic layers combined, washed with aqueous hydrochloric acid (60 ml, 5% solution), saturated NaHCO3 solution (60 ml), and brine (60 ml), and then dried over sodium sulfate. The solvent was then removed in vacuo to yield the title compound (1.81 g, 8.2 mmol) as a white solid. The title compound was crystalized by slow evaporation of a solution in methanol.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with N—H = 0.86 and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, mehtylene and methine H atoms, respectively, and Uiso(H) = 1.5Ueq(methyl) and 1.2Ueq(the rest) parent atoms. An absolute configuration could not be established by anomalous dispersion effects. Therefore, Fridel pairs (846) were merged.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C12H15NO3 F(000) = 472
Mr = 221.25 Dx = 1.264 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 5.7960 (12) Å θ = 9–12°
b = 9.924 (2) Å µ = 0.09 mm1
c = 20.209 (4) Å T = 293 K
V = 1162.4 (4) Å3 Needle, colourless
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 904 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.043
graphite θmax = 25.3°, θmin = 2.0°
ω/2θ scans h = 0→6
Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989) k = 0→11
Tmin = 0.973, Tmax = 0.991 l = −24→24
2427 measured reflections 3 standard reflections every 200 reflections
1246 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.08P)2 + 0.28P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1246 reflections Δρmax = 0.17 e Å3
146 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.031 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N −0.1179 (6) 0.5921 (3) 1.00790 (17) 0.0589 (9)
H0A −0.1581 0.6728 1.0182 0.071*
O1 0.4026 (6) 0.3182 (3) 1.25901 (14) 0.0754 (9)
O2 0.0990 (5) 0.4271 (3) 0.97230 (16) 0.0696 (9)
O3 0.2494 (5) 0.6348 (3) 0.97241 (19) 0.0845 (11)
C1 0.7072 (9) 0.3538 (5) 1.3348 (2) 0.0801 (14)
H1A 0.7873 0.4207 1.3603 0.120*
H1B 0.8134 0.3107 1.3051 0.120*
H1C 0.6415 0.2878 1.3639 0.120*
C2 0.5179 (9) 0.4202 (4) 1.2955 (2) 0.0725 (12)
H2A 0.4105 0.4650 1.3250 0.087*
H2B 0.5824 0.4869 1.2657 0.087*
C3 0.2251 (8) 0.3587 (4) 1.21793 (19) 0.0596 (11)
C4 0.1675 (9) 0.4911 (4) 1.2056 (2) 0.0651 (12)
H4A 0.2504 0.5608 1.2252 0.078*
C5 −0.0159 (8) 0.5190 (4) 1.1637 (2) 0.0643 (12)
H5A −0.0542 0.6086 1.1559 0.077*
C6 −0.1449 (8) 0.4190 (4) 1.13291 (19) 0.0595 (11)
C7 −0.0758 (10) 0.2863 (4) 1.1469 (2) 0.0648 (13)
H7A −0.1548 0.2156 1.1270 0.078*
C8 0.1011 (10) 0.2573 (4) 1.1883 (2) 0.0686 (13)
H8A 0.1391 0.1679 1.1967 0.082*
C9 −0.3390 (7) 0.4521 (4) 1.0869 (2) 0.0660 (12)
H9A −0.4173 0.5317 1.1033 0.079*
H9B −0.4490 0.3784 1.0877 0.079*
C10 −0.2686 (7) 0.4773 (4) 1.0154 (2) 0.0558 (10)
H10A −0.4074 0.4910 0.9885 0.067*
C11 −0.1210 (7) 0.3682 (4) 0.9839 (2) 0.0568 (10)
H11A −0.1071 0.2914 1.0134 0.068*
H11B −0.1892 0.3381 0.9427 0.068*
C12 0.0875 (7) 0.5618 (4) 0.9838 (2) 0.0565 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0555 (19) 0.0374 (15) 0.084 (2) 0.0096 (16) 0.0052 (19) −0.0044 (15)
O1 0.096 (2) 0.0555 (16) 0.0745 (18) −0.0051 (18) 0.000 (2) −0.0037 (14)
O2 0.0475 (15) 0.0404 (13) 0.121 (2) 0.0004 (13) 0.0102 (17) −0.0137 (15)
O3 0.0402 (15) 0.0525 (16) 0.161 (3) −0.0080 (15) 0.003 (2) −0.0047 (18)
C1 0.081 (3) 0.082 (3) 0.077 (3) 0.000 (3) 0.000 (3) −0.009 (3)
C2 0.079 (3) 0.063 (2) 0.076 (3) −0.006 (3) −0.001 (3) −0.009 (2)
C3 0.067 (3) 0.058 (2) 0.054 (2) −0.005 (2) 0.010 (2) 0.0022 (18)
C4 0.079 (3) 0.051 (2) 0.065 (2) −0.007 (2) 0.002 (3) −0.0078 (19)
C5 0.071 (3) 0.048 (2) 0.074 (3) −0.001 (2) 0.011 (3) −0.008 (2)
C6 0.066 (3) 0.053 (2) 0.059 (2) −0.010 (2) 0.020 (2) −0.0044 (18)
C7 0.083 (3) 0.048 (2) 0.064 (2) −0.016 (2) 0.007 (3) −0.0046 (18)
C8 0.100 (4) 0.045 (2) 0.061 (2) −0.006 (3) 0.006 (3) 0.0016 (18)
C9 0.054 (2) 0.059 (2) 0.085 (3) −0.003 (2) 0.015 (2) −0.012 (2)
C10 0.0358 (18) 0.049 (2) 0.082 (3) 0.0002 (18) −0.007 (2) −0.005 (2)
C11 0.054 (2) 0.048 (2) 0.069 (2) −0.010 (2) −0.002 (2) −0.0077 (18)
C12 0.044 (2) 0.0382 (18) 0.088 (3) 0.0028 (18) −0.011 (2) −0.0025 (19)

Geometric parameters (Å, °)

N—C12 1.321 (5) C4—C5 1.387 (6)
N—C10 1.444 (5) C4—H4A 0.9300
N—H0A 0.8600 C5—C6 1.390 (6)
O1—C3 1.382 (5) C5—H5A 0.9300
O1—C2 1.420 (5) C6—C7 1.405 (6)
O2—C12 1.358 (5) C6—C9 1.497 (6)
O2—C11 1.423 (5) C7—C8 1.354 (7)
O3—C12 1.208 (5) C7—H7A 0.9300
C1—C2 1.506 (6) C8—H8A 0.9300
C1—H1A 0.9600 C9—C10 1.522 (6)
C1—H1B 0.9600 C9—H9A 0.9700
C1—H1C 0.9600 C9—H9B 0.9700
C2—H2A 0.9700 C10—C11 1.519 (5)
C2—H2B 0.9700 C10—H10A 0.9800
C3—C8 1.374 (6) C11—H11A 0.9700
C3—C4 1.379 (6) C11—H11B 0.9700
C12—N—C10 113.8 (3) C7—C6—C9 123.1 (4)
C12—N—H0A 123.1 C8—C7—C6 122.7 (4)
C10—N—H0A 123.1 C8—C7—H7A 118.7
C3—O1—C2 117.1 (3) C6—C7—H7A 118.7
C12—O2—C11 109.4 (3) C7—C8—C3 120.6 (4)
C2—C1—H1A 109.5 C7—C8—H8A 119.7
C2—C1—H1B 109.5 C3—C8—H8A 119.7
H1A—C1—H1B 109.5 C6—C9—C10 115.1 (3)
C2—C1—H1C 109.5 C6—C9—H9A 108.5
H1A—C1—H1C 109.5 C10—C9—H9A 108.5
H1B—C1—H1C 109.5 C6—C9—H9B 108.5
O1—C2—C1 107.8 (4) C10—C9—H9B 108.5
O1—C2—H2A 110.2 H9A—C9—H9B 107.5
C1—C2—H2A 110.2 N—C10—C11 100.2 (3)
O1—C2—H2B 110.2 N—C10—C9 113.0 (3)
C1—C2—H2B 110.2 C11—C10—C9 115.5 (3)
H2A—C2—H2B 108.5 N—C10—H10A 109.2
C8—C3—C4 119.5 (4) C11—C10—H10A 109.2
C8—C3—O1 116.0 (4) C9—C10—H10A 109.2
C4—C3—O1 124.4 (4) O2—C11—C10 106.3 (3)
C3—C4—C5 119.1 (4) O2—C11—H11A 110.5
C3—C4—H4A 120.5 C10—C11—H11A 110.5
C5—C4—H4A 120.5 O2—C11—H11B 110.5
C4—C5—C6 122.9 (4) C10—C11—H11B 110.5
C4—C5—H5A 118.6 H11A—C11—H11B 108.7
C6—C5—H5A 118.6 O3—C12—N 129.3 (4)
C5—C6—C7 115.2 (4) O3—C12—O2 121.3 (4)
C5—C6—C9 121.7 (4) N—C12—O2 109.4 (4)
C3—O1—C2—C1 −178.3 (3) C5—C6—C9—C10 85.5 (5)
C2—O1—C3—C8 −173.6 (4) C7—C6—C9—C10 −92.8 (5)
C2—O1—C3—C4 6.2 (6) C12—N—C10—C11 −5.5 (4)
C8—C3—C4—C5 0.3 (6) C12—N—C10—C9 118.0 (4)
O1—C3—C4—C5 −179.5 (4) C6—C9—C10—N −62.6 (4)
C3—C4—C5—C6 −0.4 (6) C6—C9—C10—C11 52.0 (5)
C4—C5—C6—C7 −0.3 (6) C12—O2—C11—C10 −9.0 (5)
C4—C5—C6—C9 −178.8 (4) N—C10—C11—O2 8.4 (4)
C5—C6—C7—C8 1.1 (6) C9—C10—C11—O2 −113.4 (4)
C9—C6—C7—C8 179.5 (4) C10—N—C12—O3 −179.6 (4)
C6—C7—C8—C3 −1.1 (7) C10—N—C12—O2 0.3 (5)
C4—C3—C8—C7 0.4 (6) C11—O2—C12—O3 −174.4 (4)
O1—C3—C8—C7 −179.7 (4) C11—O2—C12—N 5.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···O3i 0.86 1.99 2.845 (4) 171
C10—H10A···O3ii 0.98 2.47 3.317 (5) 144

Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2144).

References

  1. Chrzanowska, M. & Rozwadowska, M. D. (2004). Chem. Rev.104, 3341–3370. [DOI] [PubMed]
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Rozwadowska, M. D. (1994). Heterocycles, 39, 903–931.
  5. Scott, J. D. & Williams, R. M. (2002). Chem. Rev.102, 1669–1730. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tussetschläger, S., Baro, A., Laschat, S. & Frey, W. (2007). Eur. J. Org. Chem. pp. 5590–5602.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900957X/pv2144sup1.cif

e-65-0o805-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900957X/pv2144Isup2.hkl

e-65-0o805-Isup2.hkl (61.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES