Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):m403–m404. doi: 10.1107/S1600536809008721

{6,6′-Dieth­oxy-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II) monohydrate

Hadi Kargar a, Arezoo Jamshidvand a, Hoong-Kun Fun b,*, Reza Kia b,
PMCID: PMC2968910  PMID: 21582349

Abstract

In the title complex, [Ni(C23H28N2O4)]·H2O, the NiII ion is coordinated by the N2O2 unit of the tetra­dentate Schiff base ligand in a slightly distorted planar geometry. The asymmetric unit of the title compound comprises one complex mol­ecule and a water mol­ecule of crystallization. The H atoms of the water mol­ecule make bifurcated inter­molecular hydrogen bonds with the O atoms of the phenolate and eth­oxy groups with R 1 2(5) and R 1 2(6) ring motifs, which may, in part, influence the mol­ecular configuration. The dihedral angle between the two benzene rings is 31.43 (5)°. The crystal structure is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions, which link neighbouring mol­ecules into one-dimensional extended chains along the a axis. An inter­esting feature of the crystal structure is the short inter­molecular C⋯C [3.3044 (14) Å] contact which is shorter than the sum of the van der Waals radii.

Related literature

For bond-length data, see Allen et al. (1987). For related structures see, for example: Clark et al. (1968, 1969, 1970). For the applications and bioactivities of Schiff base complexes with transition metals, see, for example: Elmali et al. (2000); Blower (1998); Granovski et al., (1993); Li & Chang (1991); Shahrokhian et al. (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-0m403-scheme1.jpg

Experimental

Crystal data

  • [Ni(C23H28N2O4)]·H2O

  • M r = 473.20

  • Triclinic, Inline graphic

  • a = 9.3797 (1) Å

  • b = 10.7570 (1) Å

  • c = 12.8002 (1) Å

  • α = 65.811 (1)°

  • β = 68.87°

  • γ = 78.336 (1)°

  • V = 1096.64 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.36 × 0.19 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.733, T max = 0.879

  • 29688 measured reflections

  • 9211 independent reflections

  • 8270 reflections with I > 2σI)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.073

  • S = 1.04

  • 9211 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008721/at2741sup1.cif

e-65-0m403-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008721/at2741Isup2.hkl

e-65-0m403-Isup2.hkl (450.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1 1.8523 (6)
Ni1—O2 1.8605 (6)
Ni1—N2 1.8748 (7)
Ni1—N1 1.8766 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O1 0.80 (2) 2.499 (19) 3.0368 (12) 125.8 (16)
O1W—H2W1⋯O3 0.80 (2) 2.20 (2) 2.9805 (12) 164.7 (18)
O1W—H1W1⋯O2 0.77 (2) 2.15 (2) 2.8597 (10) 152 (2)
O1W—H1W1⋯O4 0.77 (2) 2.53 (2) 3.1658 (12) 140 (2)
C8—H8B⋯O1i 0.99 2.42 3.3216 (13) 151
C11—H11A⋯O1Wii 0.95 2.51 3.4242 (13) 161
C5—-H5ACg1i 0.95 2.88 3.3506 (12) 111
C10—-H10BCg1ii 0.99 2.73 3.4406 (11) 129
C22—-H22BCg2iii 0.99 2.87 3.8068 (11) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

The NiII ion of the title compound (Fig. 1), shows a sligthly distorted planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The asymmetric unit of the title compound comprises one molecule of complex and a water molecule of crystallization. The hydrogen atoms of the water molecule make bifurcated intermolecular hydrogen bonds with the oxygen atoms of the phenolato- and ethoxy groups with R21(5) and R21(6) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration. The dihedral angle between the two benzene rings is 31.43 (5)°. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions which link neighbouring molecules into 1-D extended chains along the a axis. The interesting feature of the crystal structure is a short intermolecular C7···C17i [3.3044 (14) Å] contact which is shorter than the sum of the van der Waals radius of a carbon atom. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions (Table 2, Cg1 and Cg2 are the centroids of the C12–C17 and C1–C6 benzene rings) which link neighbouring molecules into 1-D extended chains along the b-axis (Fig. 2).

Experimental

A chloroform solution (40 ml) of [N,N'-Bis(3-ethoxy-salicylidene)-2, 2-dimethyl-1,3-propanediamin (1 mmol) was added to a ethanol solution (20 mL) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, deep-green block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

The water H-atoms were located from the difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–99 Å] and refined using a riding approximation model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was used for the methyl groups of the ethoxy substituents.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the c-axis, showing 1-D extended chains along the a-axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

[Ni(C23H28N2O4)]·H2O Z = 2
Mr = 473.20 F(000) = 500
Triclinic, P1 Dx = 1.433 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3797 (1) Å Cell parameters from 9961 reflections
b = 10.7570 (1) Å θ = 2.2–39.8°
c = 12.8002 (1) Å µ = 0.92 mm1
α = 65.811 (1)° T = 100 K
β = 68.87° Block, green
γ = 78.336 (1)° 0.36 × 0.19 × 0.14 mm
V = 1096.64 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8270 reflections with I > 2σ(I)
φ and ω scans Rint = 0.023
Absorption correction: multi-scan (SADABS; Bruker, 2005) θmax = 34.5°, θmin = 1.8°
Tmin = 0.733, Tmax = 0.879 h = −14→14
29688 measured reflections k = −17→16
9211 independent reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.3434P] where P = (Fo2 + 2Fc2)/3
9211 reflections (Δ/σ)max = 0.002
290 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.226401 (12) −0.053714 (11) 0.977253 (10) 0.01153 (3)
O1 0.23133 (8) −0.03160 (7) 0.82469 (6) 0.01499 (11)
O2 0.29583 (8) 0.12152 (7) 0.90220 (6) 0.01433 (11)
O3 0.28411 (8) 0.03631 (7) 0.59447 (6) 0.01764 (12)
O4 0.30413 (8) 0.38398 (7) 0.78316 (6) 0.01683 (12)
N1 0.10045 (8) −0.20138 (8) 1.05666 (7) 0.01348 (12)
N2 0.28140 (8) −0.09129 (8) 1.11477 (7) 0.01317 (12)
C1 0.17327 (10) −0.10785 (9) 0.79462 (8) 0.01354 (14)
C2 0.19469 (10) −0.07175 (9) 0.66932 (8) 0.01518 (14)
C3 0.12695 (11) −0.14175 (10) 0.63155 (9) 0.01851 (16)
H3A 0.1417 −0.1157 0.5481 0.022*
C4 0.03610 (12) −0.25156 (11) 0.71655 (10) 0.02041 (17)
H4A −0.0122 −0.2979 0.6905 0.024*
C5 0.01751 (11) −0.29140 (10) 0.83686 (9) 0.01839 (16)
H5A −0.0420 −0.3666 0.8936 0.022*
C6 0.08636 (10) −0.22137 (9) 0.87752 (8) 0.01478 (14)
C7 0.05068 (10) −0.25756 (9) 1.00486 (8) 0.01497 (14)
H7A −0.0157 −0.3295 1.0562 0.018*
C8 0.02317 (10) −0.23401 (9) 1.18710 (8) 0.01525 (15)
H8A −0.0543 −0.3007 1.2157 0.018*
H8B −0.0316 −0.1499 1.1996 0.018*
C9 0.13208 (10) −0.29300 (9) 1.26399 (8) 0.01469 (14)
C10 0.29062 (10) −0.23683 (9) 1.19059 (8) 0.01490 (14)
H10A 0.3476 −0.2494 1.2463 0.018*
H10B 0.3484 −0.2895 1.1387 0.018*
C11 0.33388 (10) −0.00677 (9) 1.13864 (8) 0.01485 (14)
H11A 0.3686 −0.0425 1.2072 0.018*
C12 0.34334 (10) 0.13722 (9) 1.06889 (8) 0.01425 (14)
C13 0.38100 (12) 0.22038 (10) 1.11540 (9) 0.01869 (16)
H13A 0.4020 0.1802 1.1901 0.022*
C14 0.38748 (12) 0.35894 (10) 1.05349 (9) 0.01931 (17)
H14A 0.4100 0.4146 1.0864 0.023*
C15 0.36063 (11) 0.41821 (10) 0.94107 (9) 0.01667 (15)
H15A 0.3634 0.5142 0.8989 0.020*
C16 0.33023 (10) 0.33740 (9) 0.89181 (8) 0.01361 (14)
C17 0.32095 (9) 0.19304 (9) 0.95500 (8) 0.01256 (13)
C18 0.06211 (12) −0.25176 (11) 1.37441 (9) 0.02151 (18)
H18A 0.0491 −0.1520 1.3479 0.032*
H18B 0.1303 −0.2864 1.4244 0.032*
H18C −0.0378 −0.2906 1.4215 0.032*
C19 0.15271 (12) −0.44884 (10) 1.30393 (11) 0.02356 (19)
H19A 0.2224 −0.4841 1.3527 0.035*
H19B 0.1958 −0.4741 1.2328 0.035*
H19C 0.0532 −0.4880 1.3519 0.035*
C20 0.29788 (12) 0.09025 (10) 0.46874 (8) 0.01952 (17)
H20A 0.1955 0.1167 0.4575 0.023*
H20B 0.3498 0.0213 0.4322 0.023*
C21 0.39176 (14) 0.21404 (11) 0.41110 (9) 0.02295 (19)
H21A 0.3962 0.2597 0.3263 0.034*
H21B 0.4957 0.1851 0.4164 0.034*
H21C 0.3440 0.2774 0.4533 0.034*
C22 0.35841 (11) 0.51438 (9) 0.69639 (9) 0.01766 (16)
H22A 0.4706 0.5140 0.6771 0.021*
H22B 0.3085 0.5873 0.7284 0.021*
C23 0.31822 (12) 0.53790 (11) 0.58548 (9) 0.02132 (18)
H23A 0.3592 0.6233 0.5216 0.032*
H23B 0.2066 0.5439 0.6047 0.032*
H23C 0.3627 0.4618 0.5580 0.032*
O1W 0.47217 (9) 0.17324 (9) 0.65560 (7) 0.02297 (15)
H2W1 0.422 (2) 0.1245 (18) 0.6513 (16) 0.037 (5)*
H1W1 0.419 (2) 0.187 (2) 0.7124 (19) 0.051 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01281 (5) 0.01131 (5) 0.01095 (5) −0.00182 (3) −0.00487 (4) −0.00308 (4)
O1 0.0199 (3) 0.0142 (3) 0.0134 (3) −0.0042 (2) −0.0070 (2) −0.0047 (2)
O2 0.0197 (3) 0.0125 (3) 0.0130 (3) −0.0036 (2) −0.0068 (2) −0.0040 (2)
O3 0.0247 (3) 0.0172 (3) 0.0125 (3) −0.0044 (2) −0.0076 (2) −0.0040 (2)
O4 0.0215 (3) 0.0138 (3) 0.0151 (3) −0.0060 (2) −0.0086 (2) −0.0004 (2)
N1 0.0123 (3) 0.0136 (3) 0.0136 (3) −0.0012 (2) −0.0045 (2) −0.0036 (2)
N2 0.0133 (3) 0.0135 (3) 0.0122 (3) −0.0014 (2) −0.0051 (2) −0.0031 (2)
C1 0.0141 (3) 0.0130 (3) 0.0159 (4) 0.0007 (3) −0.0066 (3) −0.0067 (3)
C2 0.0171 (4) 0.0149 (4) 0.0162 (4) 0.0001 (3) −0.0071 (3) −0.0071 (3)
C3 0.0209 (4) 0.0207 (4) 0.0199 (4) −0.0005 (3) −0.0089 (3) −0.0114 (3)
C4 0.0200 (4) 0.0232 (4) 0.0258 (5) −0.0024 (3) −0.0084 (3) −0.0148 (4)
C5 0.0160 (4) 0.0195 (4) 0.0229 (4) −0.0038 (3) −0.0045 (3) −0.0110 (3)
C6 0.0133 (3) 0.0153 (4) 0.0174 (4) −0.0015 (3) −0.0045 (3) −0.0076 (3)
C7 0.0125 (3) 0.0146 (4) 0.0174 (4) −0.0020 (3) −0.0043 (3) −0.0052 (3)
C8 0.0115 (3) 0.0181 (4) 0.0134 (3) −0.0008 (3) −0.0033 (3) −0.0037 (3)
C9 0.0132 (3) 0.0137 (3) 0.0136 (3) −0.0005 (3) −0.0043 (3) −0.0017 (3)
C10 0.0132 (3) 0.0140 (3) 0.0154 (4) 0.0001 (3) −0.0061 (3) −0.0025 (3)
C11 0.0152 (3) 0.0172 (4) 0.0125 (3) −0.0024 (3) −0.0055 (3) −0.0041 (3)
C12 0.0155 (3) 0.0164 (4) 0.0124 (3) −0.0036 (3) −0.0049 (3) −0.0052 (3)
C13 0.0228 (4) 0.0221 (4) 0.0152 (4) −0.0062 (3) −0.0070 (3) −0.0076 (3)
C14 0.0222 (4) 0.0212 (4) 0.0189 (4) −0.0068 (3) −0.0057 (3) −0.0096 (3)
C15 0.0167 (4) 0.0163 (4) 0.0183 (4) −0.0042 (3) −0.0044 (3) −0.0072 (3)
C16 0.0126 (3) 0.0145 (3) 0.0140 (3) −0.0025 (3) −0.0043 (3) −0.0047 (3)
C17 0.0117 (3) 0.0138 (3) 0.0130 (3) −0.0021 (2) −0.0039 (3) −0.0052 (3)
C18 0.0204 (4) 0.0266 (5) 0.0143 (4) 0.0003 (3) −0.0051 (3) −0.0056 (3)
C19 0.0205 (4) 0.0134 (4) 0.0302 (5) −0.0011 (3) −0.0082 (4) −0.0014 (4)
C20 0.0286 (5) 0.0188 (4) 0.0137 (4) −0.0003 (3) −0.0089 (3) −0.0069 (3)
C21 0.0347 (5) 0.0193 (4) 0.0141 (4) −0.0035 (4) −0.0074 (4) −0.0048 (3)
C22 0.0174 (4) 0.0138 (4) 0.0185 (4) −0.0039 (3) −0.0065 (3) −0.0006 (3)
C23 0.0216 (4) 0.0201 (4) 0.0175 (4) −0.0021 (3) −0.0070 (3) −0.0013 (3)
O1W 0.0231 (3) 0.0296 (4) 0.0172 (3) −0.0094 (3) −0.0036 (3) −0.0084 (3)

Geometric parameters (Å, °)

Ni1—O1 1.8523 (6) C10—H10B 0.9900
Ni1—O2 1.8605 (6) C11—C12 1.4385 (12)
Ni1—N2 1.8748 (7) C11—H11A 0.9500
Ni1—N1 1.8766 (8) C12—C17 1.4079 (12)
O1—C1 1.3068 (10) C12—C13 1.4127 (12)
O2—C17 1.3109 (10) C13—C14 1.3738 (14)
O3—C2 1.3692 (11) C13—H13A 0.9500
O3—C20 1.4349 (11) C14—C15 1.4089 (14)
O4—C16 1.3675 (11) C14—H14A 0.9500
O4—C22 1.4370 (11) C15—C16 1.3833 (12)
N1—C7 1.2994 (11) C15—H15A 0.9500
N1—C8 1.4786 (12) C16—C17 1.4310 (12)
N2—C11 1.2960 (11) C18—H18A 0.9800
N2—C10 1.4700 (11) C18—H18B 0.9800
C1—C6 1.4137 (12) C18—H18C 0.9800
C1—C2 1.4327 (12) C19—H19A 0.9800
C2—C3 1.3848 (12) C19—H19B 0.9800
C3—C4 1.4109 (15) C19—H19C 0.9800
C3—H3A 0.9500 C20—C21 1.5144 (15)
C4—C5 1.3716 (14) C20—H20A 0.9900
C4—H4A 0.9500 C20—H20B 0.9900
C5—C6 1.4197 (13) C21—H21A 0.9800
C5—H5A 0.9500 C21—H21B 0.9800
C6—C7 1.4352 (13) C21—H21C 0.9800
C7—H7A 0.9500 C22—C23 1.5081 (14)
C8—C9 1.5382 (12) C22—H22A 0.9900
C8—H8A 0.9900 C22—H22B 0.9900
C8—H8B 0.9900 C23—H23A 0.9800
C9—C19 1.5320 (13) C23—H23B 0.9800
C9—C10 1.5330 (12) C23—H23C 0.9800
C9—C18 1.5337 (14) O1W—H2W1 0.798 (19)
C10—H10A 0.9900 O1W—H1W1 0.77 (2)
O1—Ni1—O2 84.55 (3) C12—C11—H11A 117.6
O1—Ni1—N2 163.37 (3) C17—C12—C13 120.81 (8)
O2—Ni1—N2 93.63 (3) C17—C12—C11 120.71 (8)
O1—Ni1—N1 94.46 (3) C13—C12—C11 118.45 (8)
O2—Ni1—N1 163.13 (3) C14—C13—C12 120.52 (8)
N2—Ni1—N1 91.99 (3) C14—C13—H13A 119.7
C1—O1—Ni1 128.09 (6) C12—C13—H13A 119.7
C17—O2—Ni1 126.23 (6) C13—C14—C15 119.80 (8)
C2—O3—C20 118.18 (7) C13—C14—H14A 120.1
C16—O4—C22 117.93 (7) C15—C14—H14A 120.1
C7—N1—C8 116.61 (7) C16—C15—C14 120.37 (9)
C7—N1—Ni1 125.70 (6) C16—C15—H15A 119.8
C8—N1—Ni1 116.04 (6) C14—C15—H15A 119.8
C11—N2—C10 117.40 (7) O4—C16—C15 125.18 (8)
C11—N2—Ni1 126.74 (6) O4—C16—C17 113.82 (7)
C10—N2—Ni1 114.92 (6) C15—C16—C17 120.99 (8)
O1—C1—C6 124.54 (8) O2—C17—C12 124.49 (8)
O1—C1—C2 117.97 (8) O2—C17—C16 118.10 (7)
C6—C1—C2 117.46 (8) C12—C17—C16 117.39 (8)
O3—C2—C3 124.85 (8) C9—C18—H18A 109.5
O3—C2—C1 114.03 (8) C9—C18—H18B 109.5
C3—C2—C1 121.11 (9) H18A—C18—H18B 109.5
C2—C3—C4 120.24 (9) C9—C18—H18C 109.5
C2—C3—H3A 119.9 H18A—C18—H18C 109.5
C4—C3—H3A 119.9 H18B—C18—H18C 109.5
C5—C4—C3 120.01 (9) C9—C19—H19A 109.5
C5—C4—H4A 120.0 C9—C19—H19B 109.5
C3—C4—H4A 120.0 H19A—C19—H19B 109.5
C4—C5—C6 120.67 (9) C9—C19—H19C 109.5
C4—C5—H5A 119.7 H19A—C19—H19C 109.5
C6—C5—H5A 119.7 H19B—C19—H19C 109.5
C1—C6—C5 120.43 (8) O3—C20—C21 106.38 (8)
C1—C6—C7 120.59 (8) O3—C20—H20A 110.5
C5—C6—C7 118.55 (8) C21—C20—H20A 110.5
N1—C7—C6 126.29 (8) O3—C20—H20B 110.5
N1—C7—H7A 116.9 C21—C20—H20B 110.5
C6—C7—H7A 116.9 H20A—C20—H20B 108.6
N1—C8—C9 114.08 (7) C20—C21—H21A 109.5
N1—C8—H8A 108.7 C20—C21—H21B 109.5
C9—C8—H8A 108.7 H21A—C21—H21B 109.5
N1—C8—H8B 108.7 C20—C21—H21C 109.5
C9—C8—H8B 108.7 H21A—C21—H21C 109.5
H8A—C8—H8B 107.6 H21B—C21—H21C 109.5
C19—C9—C10 107.48 (7) O4—C22—C23 106.57 (8)
C19—C9—C18 110.13 (8) O4—C22—H22A 110.4
C10—C9—C18 110.50 (8) C23—C22—H22A 110.4
C19—C9—C8 110.92 (8) O4—C22—H22B 110.4
C10—C9—C8 110.21 (7) C23—C22—H22B 110.4
C18—C9—C8 107.62 (7) H22A—C22—H22B 108.6
N2—C10—C9 112.31 (7) C22—C23—H23A 109.5
N2—C10—H10A 109.1 C22—C23—H23B 109.5
C9—C10—H10A 109.1 H23A—C23—H23B 109.5
N2—C10—H10B 109.1 C22—C23—H23C 109.5
C9—C10—H10B 109.1 H23A—C23—H23C 109.5
H10A—C10—H10B 107.9 H23B—C23—H23C 109.5
N2—C11—C12 124.73 (8) H2W1—O1W—H1W1 100.8 (18)
N2—C11—H11A 117.6
O2—Ni1—O1—C1 −168.23 (8) Ni1—N1—C7—C6 2.41 (13)
N2—Ni1—O1—C1 107.35 (12) C1—C6—C7—N1 −5.56 (14)
N1—Ni1—O1—C1 −5.14 (8) C5—C6—C7—N1 −178.10 (9)
O1—Ni1—O2—C17 177.64 (7) C7—N1—C8—C9 124.62 (9)
N2—Ni1—O2—C17 −18.95 (7) Ni1—N1—C8—C9 −69.17 (9)
N1—Ni1—O2—C17 90.23 (12) N1—C8—C9—C19 −89.00 (9)
O1—Ni1—N1—C7 2.24 (8) N1—C8—C9—C10 29.91 (11)
O2—Ni1—N1—C7 88.17 (13) N1—C8—C9—C18 150.47 (8)
N2—Ni1—N1—C7 −162.42 (8) C11—N2—C10—C9 115.54 (9)
O1—Ni1—N1—C8 −162.55 (6) Ni1—N2—C10—C9 −74.85 (8)
O2—Ni1—N1—C8 −76.61 (12) C19—C9—C10—N2 161.00 (8)
N2—Ni1—N1—C8 32.80 (6) C18—C9—C10—N2 −78.80 (9)
O1—Ni1—N2—C11 88.87 (13) C8—C9—C10—N2 40.01 (10)
O2—Ni1—N2—C11 5.77 (8) C10—N2—C11—C12 175.62 (8)
N1—Ni1—N2—C11 −158.31 (8) Ni1—N2—C11—C12 7.39 (13)
O1—Ni1—N2—C10 −79.61 (12) N2—C11—C12—C17 −11.73 (14)
O2—Ni1—N2—C10 −162.71 (6) N2—C11—C12—C13 170.51 (9)
N1—Ni1—N2—C10 33.21 (6) C17—C12—C13—C14 3.93 (14)
Ni1—O1—C1—C6 3.45 (13) C11—C12—C13—C14 −178.31 (9)
Ni1—O1—C1—C2 −178.65 (6) C12—C13—C14—C15 −1.80 (15)
C20—O3—C2—C3 6.21 (13) C13—C14—C15—C16 −1.05 (15)
C20—O3—C2—C1 −172.95 (8) C22—O4—C16—C15 21.08 (13)
O1—C1—C2—O3 3.97 (12) C22—O4—C16—C17 −159.98 (8)
C6—C1—C2—O3 −177.98 (8) C14—C15—C16—O4 −179.31 (8)
O1—C1—C2—C3 −175.22 (8) C14—C15—C16—C17 1.82 (14)
C6—C1—C2—C3 2.83 (13) Ni1—O2—C17—C12 19.68 (12)
O3—C2—C3—C4 −179.69 (9) Ni1—O2—C17—C16 −161.96 (6)
C1—C2—C3—C4 −0.59 (14) C13—C12—C17—O2 175.28 (9)
C2—C3—C4—C5 −1.52 (15) C11—C12—C17—O2 −2.42 (13)
C3—C4—C5—C6 1.30 (15) C13—C12—C17—C16 −3.09 (13)
O1—C1—C6—C5 174.88 (8) C11—C12—C17—C16 179.21 (8)
C2—C1—C6—C5 −3.04 (13) O4—C16—C17—O2 2.78 (11)
O1—C1—C6—C7 2.48 (14) C15—C16—C17—O2 −178.23 (8)
C2—C1—C6—C7 −175.44 (8) O4—C16—C17—C12 −178.75 (8)
C4—C5—C6—C1 1.04 (14) C15—C16—C17—C12 0.25 (12)
C4—C5—C6—C7 173.59 (9) C2—O3—C20—C21 175.61 (8)
C8—N1—C7—C6 167.12 (8) C16—O4—C22—C23 178.53 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W1···O1 0.80 (2) 2.499 (19) 3.0368 (12) 125.8 (16)
O1W—H2W1···O3 0.80 (2) 2.20 (2) 2.9805 (12) 164.7 (18)
O1W—H1W1···O2 0.77 (2) 2.15 (2) 2.8597 (10) 152 (2)
O1W—H1W1···O4 0.77 (2) 2.53 (2) 3.1658 (12) 140 (2)
C8—H8B···O1i 0.99 2.42 3.3216 (13) 151
C11—H11A···O1Wii 0.95 2.51 3.4242 (13) 161
C5—-H5A···Cg1i 0.95 2.88 3.3506 (12) 111
C10—-H10B···Cg1ii 0.99 2.73 3.4406 (11) 129
C22—-H22B···Cg2iii 0.99 2.87 3.8068 (11) 158

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2741).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.
  6. Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.
  7. Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.
  8. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  9. Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [DOI] [PubMed]
  10. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  11. Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  12. Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008721/at2741sup1.cif

e-65-0m403-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008721/at2741Isup2.hkl

e-65-0m403-Isup2.hkl (450.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES