Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):m392–m393. doi: 10.1107/S160053680900823X

Di-μ-chromato-κ4 O:O′-bis­[bis­(phenan­throline-κ2 N,N′)cadmium(II)] dihydrate

Hai-Xing Liu a, Fang-Fang Jian a,*, Jing Wang b
PMCID: PMC2968914  PMID: 21582341

Abstract

In the title compound, [Cd2Cr2O8(C12H8N2)4]·2H2O, which was obtained by hydro­thermal reaction of CdCO3 and phenanthroline with K2CrO4 at 393 K, two distorted Cd(N4O2) octa­hedra are linked through μ2-bridging chromate anions, forming a centrosymmetric tetra­nuclear eight-membered ring complex. The water mol­ecules link the chromate O atoms via inter­molecular O—H⋯O hydrogen bonds. These aggregates pack to a three-dimensional network through weak inter­molecular C—H⋯O and C—H⋯π hydrogen-bonding contacts.

Related literature

For the properties of multimetallic complexes, see: Costisor et al. (2001). For the structures of heterometallic macrocyclic rings, see: Larsen et al. (2003); Timco et al. (2005). For related structures, see: Dai et al. (2002); Chaudhuri et al. (1988); Yoshikawa et al. (2002).graphic file with name e-65-0m392-scheme1.jpg

Experimental

Crystal data

  • [Cd2Cr2O8(C12H8N2)4]·2H2O

  • M r = 1213.65

  • Monoclinic, Inline graphic

  • a = 11.2303 (13) Å

  • b = 13.6892 (16) Å

  • c = 14.5352 (19) Å

  • β = 91.928 (1)°

  • V = 2233.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 K

  • 0.13 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.830, T max = 0.930

  • 11590 measured reflections

  • 3922 independent reflections

  • 2145 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.065

  • S = 0.86

  • 3922 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900823X/si2157sup1.cif

e-65-0m392-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900823X/si2157Isup2.hkl

e-65-0m392-Isup2.hkl (192.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cd1—O2 2.215 (4)
Cd1—O1 2.226 (4)
Cd1—N2 2.370 (5)
Cd1—N1 2.376 (5)
Cd1—N4 2.394 (5)
Cd1—N3 2.397 (5)
O1—Cr1 1.660 (4)
O2—Cr1i 1.683 (4)
O3—Cr1 1.638 (4)
O4—Cr1 1.619 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2ii 0.85 2.13 2.849 (6) 142
O5—H5B⋯O4iii 0.85 2.40 3.122 (6) 144
C2—H2⋯O3iv 0.93 2.49 3.274 (7) 142
C3—H3⋯O3iii 0.93 2.50 3.352 (8) 153
C9—H9⋯O3v 0.93 2.48 3.391 (7) 168
C10—H10⋯O3 0.93 2.55 3.478 (7) 175
C12—H12⋯O4ii 0.93 2.58 3.423 (7) 151
C20—H20⋯O5vi 0.93 2.49 3.344 (8) 152
C23—H23⋯Cg1vii 0.93 2.61 3.509 (7) 164

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic. Cg1 is the centroid of atoms N1,C1–C5.

supplementary crystallographic information

Comment

In recent decades, research on multimetallic complexes has grown in modern inorganic chemistry, because of searching for new materials, exhibiting exciting magnetic properties, electrical and optical properties (Costisor et al., 2001). But the heterometallic systems are rare because of the difficult synthesis. In contrast to the heterometallic macrocylic ring structures reported (Larsen et al., 2003 & Timco et al., 2005), we describe the synthesis and structure of the title compound, which represents a centrosymmetric heterobinuclear eight-membered ring system.

The title structure (Fig. 1) has a centrosymmetric eight-membered ring, build up of [Cd(phenanthroline)2]2+, [CrO4]2- units and two free water molecules. Each Cd atom is coordinated with four N atoms from phenanthroline ligands and two O atoms, presenting a distorted octahedral geometry. The Cr atoms are tetrahedrally coordinated. Two distorted Cd(N4O2) octahedra are linked through bridging chromate anions to form the centrosymmetric tetranuclear eight-membered ring complex. The mean Cd—O, Cr—O and Cd—N bond lengths are similar to the values reported (Dai et al., 2002, Chaudhuri et al., 1988, Yoshikawa et al., 2002). The Cr1i—O2—Cd1, O1—Cr1—O2, O2—Cd1—O1 angles are 133.1 (2)°, 109.40 (18)°, and 97.47 (13)°, respectively. Other selected geometrical parameters are given in Table 1. The dihedral angle between the phenanthroline ligands is 89.00 (1)°. The free water molecules link the chromate oxygen atoms via intermolecular O—H···O hydrogen bonds. The intermolecular C—H···O hydrogen bonds and the C—H···π interactions (Table 2) cause the crystal packing to be energetically preferable and generate a three-dimensional network as shown in Fig. 2.

Experimental

All commercially obtained reagent-grade chemicals were used without further purication. CdCO3 (3.40 g, 2.00 mmol) was dissolved in water and methanol (2:1 v/v, 30 ml), mixed with phenanthroline (6.00 g, 3.00 mmol). After stirring for 0.5 h, K2CrO4 (1.94 g, 1.00 mmol) was added to the mixture. The hydrothermal reaction was conducted at 393 K for 4 h. The yellow prism crystals were collected, after cooling and filtering (yield 1.20 g). Analysis calculated for C48H36Cd2Cr2N8O10: C 47.46, H 2.97, N 9.22%; found: C 47.44, H 3.03, N 9.20%.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing view of the molecules of (I) along the crystallographic a direction.

Crystal data

[Cd2Cr2O8(C12H8N2)4]·2H2O F(000) = 1208
Mr = 1213.65 Dx = 1.805 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.2303 (13) Å Cell parameters from 1518 reflections
b = 13.6892 (16) Å θ = 2.3–25.0°
c = 14.5352 (19) Å µ = 1.48 mm1
β = 91.928 (1)° T = 298 K
V = 2233.3 (5) Å3 Prism, yellow
Z = 2 0.13 × 0.08 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3922 independent reflections
Radiation source: fine-focus sealed tube 2145 reflections with I > 2σ(I)
graphite Rint = 0.096
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −13→9
Tmin = 0.830, Tmax = 0.930 k = −16→14
11590 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0001P)2] where P = (Fo2 + 2Fc2)/3
3922 reflections (Δ/σ)max = 0.001
316 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.54305 (4) 0.67292 (3) 0.58619 (3) 0.03350 (14)
N1 0.5517 (4) 0.7535 (3) 0.7310 (3) 0.0336 (13)
N2 0.7407 (4) 0.6723 (3) 0.6487 (3) 0.0345 (12)
N3 0.6012 (5) 0.8015 (3) 0.4851 (4) 0.0439 (15)
N4 0.3768 (4) 0.7747 (3) 0.5434 (3) 0.0359 (13)
O1 0.6078 (4) 0.5715 (3) 0.4790 (3) 0.0484 (13)
O2 0.4197 (3) 0.5701 (3) 0.6521 (3) 0.0407 (12)
O3 0.7995 (3) 0.4755 (3) 0.4225 (3) 0.0453 (12)
O4 0.6869 (3) 0.5992 (3) 0.3082 (3) 0.0482 (12)
O5 0.9994 (4) 1.0021 (3) 1.3274 (3) 0.0759 (16)
H5A 0.9990 0.9605 1.2840 0.091*
H5B 0.9505 1.0471 1.3117 0.091*
Cr1 0.66961 (8) 0.51967 (7) 0.38910 (7) 0.0325 (3)
C1 0.4611 (5) 0.7872 (4) 0.7770 (4) 0.0391 (17)
H1 0.3848 0.7689 0.7570 0.047*
C2 0.4718 (6) 0.8482 (4) 0.8532 (4) 0.0436 (18)
H2 0.4043 0.8706 0.8819 0.052*
C3 0.5821 (6) 0.8746 (4) 0.8852 (4) 0.0431 (18)
H3 0.5907 0.9143 0.9368 0.052*
C4 0.6834 (5) 0.8415 (4) 0.8399 (4) 0.0341 (15)
C5 0.6630 (5) 0.7787 (4) 0.7641 (4) 0.0276 (15)
C6 0.7639 (5) 0.7354 (4) 0.7186 (4) 0.0276 (15)
C7 0.8814 (6) 0.7601 (4) 0.7509 (4) 0.0346 (16)
C8 0.9753 (6) 0.7126 (4) 0.7098 (4) 0.0429 (18)
H8 1.0533 0.7264 0.7289 0.051*
C9 0.9533 (6) 0.6458 (4) 0.6413 (5) 0.049 (2)
H9 1.0154 0.6119 0.6152 0.059*
C10 0.8346 (6) 0.6298 (4) 0.6116 (4) 0.0391 (17)
H10 0.8206 0.5869 0.5629 0.047*
C11 0.8043 (6) 0.8687 (4) 0.8675 (4) 0.0435 (18)
H11 0.8177 0.9134 0.9149 0.052*
C12 0.8964 (5) 0.8294 (5) 0.8249 (4) 0.0423 (16)
H12 0.9732 0.8475 0.8437 0.051*
C13 0.7115 (6) 0.8143 (5) 0.4542 (4) 0.053 (2)
H13 0.7723 0.7738 0.4766 0.063*
C14 0.7391 (7) 0.8865 (5) 0.3892 (5) 0.060 (2)
H14 0.8168 0.8932 0.3700 0.072*
C15 0.6527 (6) 0.9458 (5) 0.3549 (5) 0.052 (2)
H15 0.6705 0.9934 0.3119 0.063*
C16 0.5359 (6) 0.9354 (5) 0.3845 (4) 0.0423 (18)
C17 0.5154 (6) 0.8613 (4) 0.4499 (4) 0.0380 (17)
C18 0.3954 (5) 0.8468 (4) 0.4803 (4) 0.0306 (15)
C19 0.3029 (6) 0.9051 (4) 0.4452 (4) 0.0396 (18)
C20 0.1869 (6) 0.8889 (5) 0.4757 (4) 0.050 (2)
H20 0.1234 0.9270 0.4540 0.060*
C21 0.1692 (5) 0.8152 (5) 0.5387 (5) 0.0480 (18)
H21 0.0935 0.8025 0.5598 0.058*
C22 0.2666 (6) 0.7604 (5) 0.5700 (4) 0.0460 (19)
H22 0.2535 0.7107 0.6122 0.055*
C23 0.4397 (7) 0.9928 (5) 0.3503 (5) 0.054 (2)
H23 0.4540 1.0412 0.3071 0.065*
C24 0.3285 (6) 0.9795 (5) 0.3783 (4) 0.053 (2)
H24 0.2671 1.0185 0.3544 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0289 (2) 0.0347 (3) 0.0369 (3) 0.0001 (3) 0.0019 (2) −0.0027 (3)
N1 0.021 (3) 0.046 (3) 0.034 (3) 0.003 (3) 0.003 (3) −0.002 (3)
N2 0.037 (3) 0.032 (3) 0.034 (3) 0.011 (3) 0.002 (3) −0.008 (3)
N3 0.039 (3) 0.041 (4) 0.053 (4) 0.005 (3) 0.011 (3) −0.003 (3)
N4 0.035 (3) 0.034 (3) 0.039 (4) 0.002 (3) 0.000 (3) 0.008 (3)
O1 0.044 (3) 0.051 (3) 0.050 (3) −0.002 (2) 0.007 (2) −0.018 (2)
O2 0.043 (3) 0.037 (3) 0.043 (3) −0.015 (2) 0.003 (2) −0.005 (2)
O3 0.027 (3) 0.052 (3) 0.057 (3) 0.010 (2) 0.003 (2) 0.004 (2)
O4 0.042 (3) 0.049 (3) 0.054 (3) −0.004 (2) 0.003 (2) 0.019 (2)
O5 0.079 (4) 0.088 (4) 0.059 (4) 0.000 (3) −0.019 (3) 0.011 (3)
Cr1 0.0274 (6) 0.0340 (6) 0.0361 (7) −0.0011 (5) 0.0021 (5) 0.0003 (5)
C1 0.030 (4) 0.039 (4) 0.048 (5) 0.000 (3) 0.005 (4) 0.005 (3)
C2 0.044 (4) 0.042 (5) 0.046 (5) 0.009 (4) 0.006 (4) −0.008 (3)
C3 0.059 (5) 0.037 (4) 0.033 (4) 0.008 (4) 0.001 (4) −0.012 (3)
C4 0.044 (4) 0.025 (4) 0.033 (4) 0.002 (3) −0.001 (3) 0.002 (3)
C5 0.034 (4) 0.021 (3) 0.028 (4) 0.002 (3) −0.002 (3) 0.002 (3)
C6 0.026 (4) 0.030 (4) 0.027 (4) −0.008 (3) 0.002 (3) −0.004 (3)
C7 0.032 (4) 0.039 (4) 0.033 (4) 0.001 (3) −0.002 (3) 0.002 (3)
C8 0.029 (4) 0.053 (5) 0.047 (5) −0.005 (4) −0.001 (4) 0.012 (4)
C9 0.035 (4) 0.052 (5) 0.061 (5) 0.007 (4) 0.017 (4) 0.009 (4)
C10 0.041 (4) 0.044 (4) 0.033 (4) −0.001 (4) 0.009 (4) −0.001 (3)
C11 0.050 (5) 0.043 (4) 0.037 (4) −0.017 (4) −0.009 (4) −0.008 (3)
C12 0.033 (4) 0.051 (4) 0.042 (4) −0.008 (4) −0.010 (3) 0.011 (4)
C13 0.048 (5) 0.045 (5) 0.067 (5) 0.003 (4) 0.017 (4) −0.004 (4)
C14 0.051 (5) 0.064 (6) 0.067 (6) −0.017 (5) 0.023 (5) 0.009 (4)
C15 0.063 (5) 0.039 (5) 0.055 (5) 0.003 (4) 0.014 (5) 0.004 (4)
C16 0.057 (5) 0.038 (4) 0.033 (4) −0.008 (4) 0.009 (4) 0.001 (3)
C17 0.038 (4) 0.036 (4) 0.039 (4) 0.003 (4) 0.005 (4) −0.006 (3)
C18 0.037 (4) 0.022 (4) 0.033 (4) −0.004 (3) 0.001 (3) −0.003 (3)
C19 0.048 (5) 0.032 (4) 0.039 (5) −0.003 (4) 0.000 (4) −0.001 (3)
C20 0.048 (5) 0.049 (5) 0.053 (5) 0.018 (4) −0.004 (4) −0.005 (4)
C21 0.032 (4) 0.049 (5) 0.063 (5) 0.002 (4) −0.005 (4) 0.007 (4)
C22 0.046 (5) 0.052 (5) 0.040 (5) −0.004 (4) 0.008 (4) 0.003 (4)
C23 0.075 (6) 0.040 (5) 0.049 (5) −0.005 (5) 0.008 (5) 0.015 (4)
C24 0.060 (5) 0.050 (5) 0.048 (5) 0.004 (4) −0.006 (4) 0.009 (4)

Geometric parameters (Å, °)

Cd1—O2 2.215 (4) C7—C8 1.390 (7)
Cd1—O1 2.226 (4) C7—C12 1.440 (8)
Cd1—N2 2.370 (5) C8—C9 1.367 (8)
Cd1—N1 2.376 (5) C8—H8 0.9300
Cd1—N4 2.394 (5) C9—C10 1.405 (8)
Cd1—N3 2.397 (5) C9—H9 0.9300
N1—C1 1.319 (6) C10—H10 0.9300
N1—C5 1.369 (7) C11—C12 1.336 (7)
N2—C10 1.334 (6) C11—H11 0.9300
N2—C6 1.353 (6) C12—H12 0.9300
N3—C13 1.344 (7) C13—C14 1.408 (8)
N3—C17 1.352 (7) C13—H13 0.9300
N4—C22 1.324 (7) C14—C15 1.348 (8)
N4—C18 1.369 (6) C14—H14 0.9300
O1—Cr1 1.660 (4) C15—C16 1.401 (8)
O2—Cr1i 1.683 (4) C15—H15 0.9300
O3—Cr1 1.638 (4) C16—C23 1.412 (9)
O4—Cr1 1.619 (4) C16—C17 1.415 (8)
O5—H5A 0.8501 C17—C18 1.445 (7)
O5—H5B 0.8500 C18—C19 1.394 (8)
Cr1—O2i 1.683 (4) C19—C20 1.408 (8)
C1—C2 1.388 (7) C19—C24 1.442 (8)
C1—H1 0.9300 C20—C21 1.381 (7)
C2—C3 1.357 (8) C20—H20 0.9300
C2—H2 0.9300 C21—C22 1.390 (8)
C3—C4 1.408 (7) C21—H21 0.9300
C3—H3 0.9300 C22—H22 0.9300
C4—C5 1.410 (7) C23—C24 1.339 (8)
C4—C11 1.452 (8) C23—H23 0.9300
C5—C6 1.456 (7) C24—H24 0.9300
C6—C7 1.426 (8)
O2—Cd1—O1 97.47 (13) C8—C7—C6 117.1 (6)
O2—Cd1—N2 115.01 (15) C8—C7—C12 123.9 (6)
O1—Cd1—N2 86.70 (15) C6—C7—C12 119.0 (5)
O2—Cd1—N1 85.37 (15) C9—C8—C7 120.3 (6)
O1—Cd1—N1 154.79 (16) C9—C8—H8 119.9
N2—Cd1—N1 69.64 (15) C7—C8—H8 119.9
O2—Cd1—N4 89.34 (15) C8—C9—C10 118.3 (6)
O1—Cd1—N4 116.81 (16) C8—C9—H9 120.9
N2—Cd1—N4 144.46 (17) C10—C9—H9 120.9
N1—Cd1—N4 88.19 (16) N2—C10—C9 124.3 (6)
O2—Cd1—N3 156.75 (17) N2—C10—H10 117.9
O1—Cd1—N3 85.81 (15) C9—C10—H10 117.9
N2—Cd1—N3 88.10 (17) C12—C11—C4 120.0 (6)
N1—Cd1—N3 101.44 (17) C12—C11—H11 120.0
N4—Cd1—N3 68.90 (17) C4—C11—H11 120.0
C1—N1—C5 116.4 (5) C11—C12—C7 122.6 (6)
C1—N1—Cd1 127.0 (4) C11—C12—H12 118.7
C5—N1—Cd1 116.0 (4) C7—C12—H12 118.7
C10—N2—C6 116.6 (5) N3—C13—C14 122.8 (6)
C10—N2—Cd1 126.1 (4) N3—C13—H13 118.6
C6—N2—Cd1 116.1 (4) C14—C13—H13 118.6
C13—N3—C17 116.6 (5) C15—C14—C13 119.9 (7)
C13—N3—Cd1 125.1 (5) C15—C14—H14 120.0
C17—N3—Cd1 118.1 (4) C13—C14—H14 120.0
C22—N4—C18 117.9 (5) C14—C15—C16 119.7 (7)
C22—N4—Cd1 124.5 (4) C14—C15—H15 120.2
C18—N4—Cd1 117.3 (4) C16—C15—H15 120.2
Cr1—O1—Cd1 166.5 (2) C15—C16—C23 123.3 (6)
Cr1i—O2—Cd1 133.1 (2) C15—C16—C17 117.0 (7)
H5A—O5—H5B 107.4 C23—C16—C17 119.7 (6)
O4—Cr1—O3 109.6 (2) N3—C17—C16 124.0 (6)
O4—Cr1—O1 110.4 (2) N3—C17—C18 117.5 (6)
O3—Cr1—O1 108.4 (2) C16—C17—C18 118.5 (6)
O4—Cr1—O2i 108.5 (2) N4—C18—C19 122.0 (5)
O3—Cr1—O2i 110.5 (2) N4—C18—C17 117.9 (6)
O1—Cr1—O2i 109.40 (18) C19—C18—C17 120.1 (6)
N1—C1—C2 124.5 (6) C18—C19—C20 118.7 (6)
N1—C1—H1 117.7 C18—C19—C24 119.2 (6)
C2—C1—H1 117.7 C20—C19—C24 122.1 (7)
C3—C2—C1 119.1 (6) C21—C20—C19 118.6 (6)
C3—C2—H2 120.4 C21—C20—H20 120.7
C1—C2—H2 120.4 C19—C20—H20 120.7
C2—C3—C4 119.7 (6) C20—C21—C22 118.9 (6)
C2—C3—H3 120.1 C20—C21—H21 120.6
C4—C3—H3 120.1 C22—C21—H21 120.6
C3—C4—C5 116.7 (6) N4—C22—C21 123.9 (6)
C3—C4—C11 123.4 (6) N4—C22—H22 118.1
C5—C4—C11 119.9 (5) C21—C22—H22 118.1
N1—C5—C4 123.4 (5) C24—C23—C16 121.8 (6)
N1—C5—C6 117.0 (5) C24—C23—H23 119.1
C4—C5—C6 119.6 (6) C16—C23—H23 119.1
N2—C6—C7 123.4 (5) C23—C24—C19 120.7 (7)
N2—C6—C5 117.9 (5) C23—C24—H24 119.7
C7—C6—C5 118.7 (5) C19—C24—H24 119.7
O2—Cd1—N1—C1 −55.4 (5) C11—C4—C5—N1 −176.7 (5)
O1—Cd1—N1—C1 −153.1 (4) C3—C4—C5—C6 −175.1 (5)
N2—Cd1—N1—C1 −174.2 (5) C11—C4—C5—C6 4.8 (9)
N4—Cd1—N1—C1 34.1 (5) C10—N2—C6—C7 2.1 (8)
N3—Cd1—N1—C1 102.1 (5) Cd1—N2—C6—C7 −166.0 (5)
O2—Cd1—N1—C5 133.8 (4) C10—N2—C6—C5 −176.5 (5)
O1—Cd1—N1—C5 36.1 (6) Cd1—N2—C6—C5 15.3 (6)
N2—Cd1—N1—C5 15.0 (4) N1—C5—C6—N2 −1.5 (8)
N4—Cd1—N1—C5 −136.7 (4) C4—C5—C6—N2 177.2 (5)
N3—Cd1—N1—C5 −68.6 (4) N1—C5—C6—C7 179.8 (5)
O2—Cd1—N2—C10 102.9 (4) C4—C5—C6—C7 −1.5 (8)
O1—Cd1—N2—C10 6.2 (5) N2—C6—C7—C8 −2.7 (9)
N1—Cd1—N2—C10 177.3 (5) C5—C6—C7—C8 175.9 (5)
N4—Cd1—N2—C10 −127.9 (4) N2—C6—C7—C12 179.1 (5)
N3—Cd1—N2—C10 −79.7 (5) C5—C6—C7—C12 −2.3 (9)
O2—Cd1—N2—C6 −90.2 (4) C6—C7—C8—C9 0.2 (9)
O1—Cd1—N2—C6 173.1 (4) C12—C7—C8—C9 178.3 (6)
N1—Cd1—N2—C6 −15.8 (4) C7—C8—C9—C10 2.6 (9)
N4—Cd1—N2—C6 38.9 (5) C6—N2—C10—C9 0.9 (9)
N3—Cd1—N2—C6 87.2 (4) Cd1—N2—C10—C9 167.7 (5)
O2—Cd1—N3—C13 −156.8 (4) C8—C9—C10—N2 −3.3 (10)
O1—Cd1—N3—C13 −57.6 (5) C3—C4—C11—C12 175.7 (6)
N2—Cd1—N3—C13 29.2 (5) C5—C4—C11—C12 −4.2 (9)
N1—Cd1—N3—C13 98.0 (5) C4—C11—C12—C7 0.3 (10)
N4—Cd1—N3—C13 −178.5 (5) C8—C7—C12—C11 −175.1 (6)
O2—Cd1—N3—C17 17.3 (7) C6—C7—C12—C11 3.0 (10)
O1—Cd1—N3—C17 116.5 (5) C17—N3—C13—C14 0.7 (10)
N2—Cd1—N3—C17 −156.7 (5) Cd1—N3—C13—C14 174.9 (5)
N1—Cd1—N3—C17 −87.9 (5) N3—C13—C14—C15 −0.5 (11)
N4—Cd1—N3—C17 −4.4 (4) C13—C14—C15—C16 0.2 (11)
O2—Cd1—N4—C22 6.7 (5) C14—C15—C16—C23 −178.3 (7)
O1—Cd1—N4—C22 104.8 (5) C14—C15—C16—C17 −0.2 (10)
N2—Cd1—N4—C22 −128.6 (5) C13—N3—C17—C16 −0.7 (9)
N1—Cd1—N4—C22 −78.7 (5) Cd1—N3—C17—C16 −175.3 (5)
N3—Cd1—N4—C22 178.3 (5) C13—N3—C17—C18 178.2 (5)
O2—Cd1—N4—C18 −166.9 (4) Cd1—N3—C17—C18 3.6 (7)
O1—Cd1—N4—C18 −68.8 (4) C15—C16—C17—N3 0.4 (10)
N2—Cd1—N4—C18 57.8 (5) C23—C16—C17—N3 178.6 (6)
N1—Cd1—N4—C18 107.8 (4) C15—C16—C17—C18 −178.5 (6)
N3—Cd1—N4—C18 4.8 (4) C23—C16—C17—C18 −0.3 (9)
O2—Cd1—O1—Cr1 168.8 (11) C22—N4—C18—C19 0.9 (9)
N2—Cd1—O1—Cr1 −76.4 (11) Cd1—N4—C18—C19 174.9 (4)
N1—Cd1—O1—Cr1 −96.2 (12) C22—N4—C18—C17 −178.9 (5)
N4—Cd1—O1—Cr1 75.7 (11) Cd1—N4—C18—C17 −4.9 (7)
N3—Cd1—O1—Cr1 11.9 (11) N3—C17—C18—N4 0.8 (8)
O1—Cd1—O2—Cr1i −35.6 (3) C16—C17—C18—N4 179.8 (5)
N2—Cd1—O2—Cr1i −125.5 (3) N3—C17—C18—C19 −178.9 (6)
N1—Cd1—O2—Cr1i 169.6 (3) C16—C17—C18—C19 0.1 (9)
N4—Cd1—O2—Cr1i 81.3 (3) N4—C18—C19—C20 −0.1 (9)
N3—Cd1—O2—Cr1i 61.2 (5) C17—C18—C19—C20 179.7 (5)
Cd1—O1—Cr1—O4 −24.0 (12) N4—C18—C19—C24 −179.6 (5)
Cd1—O1—Cr1—O3 96.1 (11) C17—C18—C19—C24 0.2 (9)
Cd1—O1—Cr1—O2i −143.3 (11) C18—C19—C20—C21 −0.6 (9)
C5—N1—C1—C2 2.4 (9) C24—C19—C20—C21 178.9 (6)
Cd1—N1—C1—C2 −168.3 (4) C19—C20—C21—C22 0.4 (10)
N1—C1—C2—C3 −1.4 (10) C18—N4—C22—C21 −1.0 (10)
C1—C2—C3—C4 1.2 (10) Cd1—N4—C22—C21 −174.6 (5)
C2—C3—C4—C5 −2.2 (9) C20—C21—C22—N4 0.4 (11)
C2—C3—C4—C11 177.9 (6) C15—C16—C23—C24 178.3 (7)
C1—N1—C5—C4 −3.5 (8) C17—C16—C23—C24 0.2 (11)
Cd1—N1—C5—C4 168.3 (4) C16—C23—C24—C19 0.0 (11)
C1—N1—C5—C6 175.1 (5) C18—C19—C24—C23 −0.2 (10)
Cd1—N1—C5—C6 −13.1 (6) C20—C19—C24—C23 −179.7 (6)
C3—C4—C5—N1 3.4 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O2ii 0.85 2.13 2.849 (6) 142
O5—H5B···O4iii 0.85 2.40 3.122 (6) 144
C2—H2···O3iv 0.93 2.49 3.274 (7) 142
C3—H3···O3iii 0.93 2.50 3.352 (8) 153
C9—H9···O3v 0.93 2.48 3.391 (7) 168
C10—H10···O3 0.93 2.55 3.478 (7) 175
C12—H12···O4ii 0.93 2.58 3.423 (7) 151
C20—H20···O5vi 0.93 2.49 3.344 (8) 152
C8—H8···Cg2ii 0.93 3.07 3.638 (7) 113
C12—H12···Cg3ii 0.93 3.03 3.277 (7) 95
C23—H23···Cg1vii 0.93 2.61 3.509 (7) 164

Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x−1/2, −y+3/2, z+1/2; (v) −x+2, −y+1, −z+1; (vi) x−1, y, z−1; (vii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2157).

References

  1. Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chaudhuri, P., Winter, M., Wieghardt, K., Gehring, S., Haase, W., Nuber, B. & Weiss, J. (1988). Inorg. Chem.27, 1564–1569.
  3. Costisor, O., Mereiter, K., Julve, M., Lloret, F., Journaux, Y., Linert, W. & Andruh, M. (2001). Inorg. Chim. Acta, 324, 352–358.
  4. Dai, J. C., Wu, X. T., Fu, Z. Y., Cui, C. P., Hu, S. M., Du, W. X., Wu, L. M., Zhang, H. H. & Sun, R. Q. (2002). Inorg. Chem.41, 1391–1396. [DOI] [PubMed]
  5. Larsen, F. K., McInnes, E. J., Mlkami, H. E., Overgaard, J., Piligkos, S., Rajaraman, G., Rentschler, E., Smith, A. A., Smith, G. M., Boote, V., Jennings, M., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed.42, 101–105. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Timco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649–3651. [DOI] [PubMed]
  8. Yoshikawa, H., Nishikiori, S., Watanabe, T., Ishida, T., Watanabe, G., Murakami, M., Suwinska, K., Luboradzki, R. & Lipkowski, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1907–1917.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900823X/si2157sup1.cif

e-65-0m392-sup1.cif (25.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900823X/si2157Isup2.hkl

e-65-0m392-Isup2.hkl (192.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES