Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m435. doi: 10.1107/S1600536809009003

Bis[μ-N′-isobutyryl-1-oxidonaphtha­lene-2-carbohydrazidato(3-)]dipyridine­tricopper(II)

Xue-Feng Shi a, Dacheng Li a,*, Pi-Yong Li a, Da-Qi Wang a
PMCID: PMC2968934  PMID: 21582373

Abstract

The complete mol­ecule of the title complex, [Cu3(C15H13N2O3)2(C5H5N)2], is generated by crystallographic twofold symmetry, with the central Cu atom lying on the rotation axis: it is coordinated by two N,O-bidentate ligands in a trans-CuN2O2 distorted square-planar arrangement. The other Cu atom is coordinated by an N,O,O′-tridentate ligand and a pyridine mol­ecule in a distorted trans-CuN2O2 arrangement. In the crystal structure, a C—H⋯π inter­action occurs.

Related literature

For related structures, see: Patole et al. (2003); Pouralimardan et al. (2007). For background on C—H⋯π inter­actions, see: Nishio (2004); Saalfrank & Bernt (1998).graphic file with name e-65-0m435-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C15H13N2O3)2(C5H5N)2]

  • M r = 887.37

  • Monoclinic, Inline graphic

  • a = 23.661 (2) Å

  • b = 13.0521 (18) Å

  • c = 13.3142 (15) Å

  • β = 113.684 (2)°

  • V = 3765.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 298 K

  • 0.37 × 0.35 × 0.31 mm

Data collection

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996) T min = 0.566, T max = 0.615 (expected range = 0.537–0.584)

  • 9477 measured reflections

  • 3310 independent reflections

  • 2319 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.135

  • S = 1.00

  • 3310 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009003/hb2917sup1.cif

e-65-0m435-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009003/hb2917Isup2.hkl

e-65-0m435-Isup2.hkl (162.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.920 (3)
Cu1—O1i 1.920 (3)
Cu1—N2 1.946 (3)
Cu1—N2i 1.946 (3)
Cu2—N1 1.884 (3)
Cu2—O2 1.890 (3)
Cu2—O3 1.953 (3)
Cu2—N3 1.975 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1ii 0.93 2.53 3.362 (4) 150

Symmetry code: (ii) Inline graphic.

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (grant No. 20671048).

supplementary crystallographic information

Comment

A large number of aroylhydrazine complexes have been prepared and studied due to their diverse molecular architectures and quite interesting chemical properties (Patole et al., 2003; Pouralimardan et al., 2007). However, researches on the copper(II) complexes with N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide have not reported. So we have synthesized a new complex, (I), (Fig. 1), which has been characterized by X-ray diffraction and elemental analysis. The molecule of (I) contains three copper(II), two ligand molecules, and two pyridine molecules. Both copper centres adopt distorted square planar trans-CuN2O2 arrangements. The triple-deprotonated N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide bridges the metal ions using a hydrazide N—N group and formed the trinuclear copper complex. In the crystal packing, the complex molecules are linked into two-dimensional network by intermolecular C—H···π interactions (Fig. 2) (Saalfrank & Bernt, 1998; Nishio, 2004).

Experimental

Isobutyric anhydride (0.632 g, 4 mmol) and 1-hydroxy-2-naphthalenecarbohydrazide (0.808 g, 4 mmol) were added to 40 ml of chloroform at ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 24 h. After overnight refrigeration, the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether (1.02 g, 93.57% yield). A solution of CuNO3(0.04 g,0.2 mmol) in methanol (10 ml) was added to a mixture of N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide (0.055 g, 0.2 mmol) and sodium methylate (0.0324 g, 0.6 mmol) in pyridine (10 ml). A green solution was obtained after refluxing for 3 h. After being filtrated, dimethyl ether was slowly diffused into the filtrate, and green blocks of (I) were obtained after two weeks. Elemental analysis calculated for C40H36N6O6Cu3: C, 54.09; H, 4.05; O, 10.78; N, 9.43. Found (%): C, 54.12; H, 4.06; O, 10.82; N, 9.47

Refinement

The C-bound H atoms were positioned with idealized geometry (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry code: (i) 1–x, y, 1/2–z.

Fig. 2.

Fig. 2.

View of the two-dimensional network structure in (I). Intermolecular C—H···π are shown as dashed lines. Most of H atoms are omitted.

Crystal data

[Cu3(C15H13N2O3)2(C5H5N)2] F(000) = 1812
Mr = 887.37 Dx = 1.565 Mg m3Dm = 1.565 Mg m3Dm measured by not measured
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3140 reflections
a = 23.661 (2) Å θ = 2.7–26.3°
b = 13.0521 (18) Å µ = 1.74 mm1
c = 13.3142 (15) Å T = 298 K
β = 113.684 (2)° Block, green
V = 3765.5 (7) Å3 0.37 × 0.35 × 0.31 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer 3310 independent reflections
Radiation source: fine-focus sealed tube 2319 reflections with I > 2σ(I)
graphite Rint = 0.050
ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Siemens, 1996) h = −28→27
Tmin = 0.566, Tmax = 0.615 k = −14→15
9477 measured reflections l = −13→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.079P)2 + 4.0071P] where P = (Fo2 + 2Fc2)/3
3310 reflections (Δ/σ)max = 0.001
251 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.33 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.86302 (6) 0.2500 0.0410 (2)
Cu2 0.68569 (2) 0.80745 (4) 0.23216 (4) 0.0404 (2)
N1 0.62147 (15) 0.8496 (3) 0.2723 (3) 0.0401 (8)
N2 0.56137 (15) 0.8380 (3) 0.1900 (3) 0.0425 (9)
N3 0.74587 (15) 0.7504 (3) 0.1787 (3) 0.0386 (8)
O1 0.57183 (12) 0.8896 (2) 0.3816 (2) 0.0446 (7)
O2 0.74777 (12) 0.8431 (2) 0.3698 (2) 0.0442 (7)
O3 0.61596 (13) 0.7851 (3) 0.0920 (2) 0.0523 (8)
C1 0.62281 (18) 0.8758 (3) 0.3692 (3) 0.0363 (9)
C2 0.73934 (18) 0.8742 (3) 0.4567 (3) 0.0361 (9)
C3 0.68203 (18) 0.8912 (3) 0.4623 (3) 0.0341 (9)
C4 0.68036 (19) 0.9281 (3) 0.5618 (3) 0.0399 (10)
H4 0.6421 0.9386 0.5645 0.048*
C5 0.7314 (2) 0.9484 (3) 0.6518 (3) 0.0440 (11)
H5 0.7278 0.9733 0.7144 0.053*
C6 0.7909 (2) 0.9322 (3) 0.6522 (3) 0.0421 (10)
C7 0.79500 (19) 0.8936 (3) 0.5546 (3) 0.0398 (10)
C8 0.85377 (19) 0.8776 (4) 0.5545 (4) 0.0503 (11)
H8 0.8570 0.8522 0.4919 0.060*
C9 0.9059 (2) 0.8990 (5) 0.6448 (4) 0.0674 (15)
H9 0.9443 0.8885 0.6426 0.081*
C10 0.9026 (2) 0.9367 (4) 0.7415 (4) 0.0655 (15)
H10 0.9385 0.9507 0.8029 0.079*
C11 0.8464 (2) 0.9522 (4) 0.7439 (4) 0.0559 (13)
H11 0.8443 0.9767 0.8080 0.067*
C12 0.56432 (19) 0.8035 (4) 0.0990 (4) 0.0451 (11)
C13 0.5056 (2) 0.7872 (4) −0.0027 (4) 0.0548 (13)
H13 0.4703 0.7944 0.0176 0.066*
C14 0.5046 (3) 0.6793 (5) −0.0479 (5) 0.090 (2)
H14A 0.5318 0.6765 −0.0854 0.135*
H14B 0.4634 0.6627 −0.0982 0.135*
H14C 0.5180 0.6310 0.0114 0.135*
C15 0.5004 (3) 0.8681 (5) −0.0879 (5) 0.0862 (19)
H15A 0.5084 0.9344 −0.0539 0.129*
H15B 0.4595 0.8668 −0.1449 0.129*
H15C 0.5299 0.8541 −0.1188 0.129*
C16 0.7284 (2) 0.6777 (3) 0.0995 (3) 0.0414 (10)
H16 0.6872 0.6577 0.0689 0.050*
C17 0.7684 (2) 0.6324 (3) 0.0624 (4) 0.0468 (11)
H17 0.7548 0.5822 0.0084 0.056*
C18 0.8288 (2) 0.6624 (4) 0.1064 (4) 0.0585 (13)
H18 0.8571 0.6324 0.0829 0.070*
C19 0.8476 (2) 0.7379 (5) 0.1861 (4) 0.0604 (13)
H19 0.8883 0.7605 0.2160 0.072*
C20 0.8046 (2) 0.7787 (4) 0.2200 (4) 0.0489 (11)
H20 0.8174 0.8285 0.2745 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0270 (4) 0.0562 (5) 0.0400 (4) 0.000 0.0138 (3) 0.000
Cu2 0.0282 (3) 0.0537 (4) 0.0391 (3) −0.0004 (2) 0.0133 (2) −0.0070 (2)
N1 0.0243 (17) 0.058 (2) 0.0350 (19) −0.0019 (16) 0.0083 (15) −0.0053 (17)
N2 0.0269 (18) 0.062 (2) 0.0371 (19) −0.0036 (17) 0.0110 (16) −0.0097 (18)
N3 0.0349 (19) 0.044 (2) 0.0392 (19) 0.0012 (16) 0.0175 (16) −0.0024 (17)
O1 0.0286 (15) 0.0644 (19) 0.0435 (17) −0.0017 (14) 0.0172 (13) −0.0100 (15)
O2 0.0308 (15) 0.0602 (19) 0.0417 (17) −0.0003 (14) 0.0146 (13) −0.0083 (15)
O3 0.0291 (16) 0.088 (2) 0.0386 (17) 0.0002 (16) 0.0123 (13) −0.0135 (16)
C1 0.031 (2) 0.039 (2) 0.041 (2) −0.0013 (18) 0.0161 (18) −0.0011 (19)
C2 0.034 (2) 0.032 (2) 0.040 (2) −0.0022 (17) 0.0121 (18) 0.0006 (18)
C3 0.029 (2) 0.034 (2) 0.037 (2) −0.0010 (17) 0.0120 (17) −0.0024 (18)
C4 0.039 (2) 0.042 (2) 0.040 (2) −0.0004 (19) 0.016 (2) −0.0016 (19)
C5 0.057 (3) 0.041 (2) 0.034 (2) −0.003 (2) 0.017 (2) −0.0002 (19)
C6 0.046 (3) 0.032 (2) 0.041 (2) −0.0017 (19) 0.011 (2) 0.0039 (19)
C7 0.040 (2) 0.032 (2) 0.043 (2) −0.0017 (18) 0.013 (2) 0.0008 (19)
C8 0.034 (2) 0.059 (3) 0.053 (3) 0.002 (2) 0.012 (2) −0.008 (2)
C9 0.037 (3) 0.089 (4) 0.066 (3) 0.001 (3) 0.009 (3) −0.006 (3)
C10 0.041 (3) 0.072 (4) 0.058 (3) −0.002 (3) −0.007 (2) −0.004 (3)
C11 0.057 (3) 0.054 (3) 0.043 (3) −0.003 (2) 0.006 (2) −0.002 (2)
C12 0.031 (2) 0.064 (3) 0.040 (2) −0.001 (2) 0.0130 (19) −0.001 (2)
C13 0.031 (2) 0.088 (4) 0.038 (2) 0.001 (2) 0.008 (2) −0.009 (3)
C14 0.078 (4) 0.082 (4) 0.070 (4) −0.011 (3) −0.012 (3) −0.016 (3)
C15 0.074 (4) 0.084 (4) 0.064 (4) −0.006 (3) −0.009 (3) 0.004 (3)
C16 0.042 (2) 0.038 (2) 0.044 (2) −0.0023 (19) 0.018 (2) 0.001 (2)
C17 0.056 (3) 0.040 (3) 0.046 (3) 0.004 (2) 0.022 (2) −0.002 (2)
C18 0.057 (3) 0.070 (3) 0.055 (3) 0.024 (3) 0.031 (3) 0.002 (3)
C19 0.035 (3) 0.089 (4) 0.056 (3) 0.005 (3) 0.017 (2) −0.003 (3)
C20 0.035 (2) 0.062 (3) 0.047 (3) 0.000 (2) 0.014 (2) −0.008 (2)

Geometric parameters (Å, °)

Cu1—O1 1.920 (3) C8—C9 1.361 (6)
Cu1—O1i 1.920 (3) C8—H8 0.9300
Cu1—N2 1.946 (3) C9—C10 1.409 (7)
Cu1—N2i 1.946 (3) C9—H9 0.9300
Cu2—N1 1.884 (3) C10—C11 1.360 (7)
Cu2—O2 1.890 (3) C10—H10 0.9300
Cu2—O3 1.953 (3) C11—H11 0.9300
Cu2—N3 1.975 (3) C12—C13 1.516 (6)
N1—C1 1.323 (5) C13—C15 1.518 (8)
N1—N2 1.412 (5) C13—C14 1.529 (8)
N2—C12 1.320 (5) C13—H13 0.9800
N3—C20 1.326 (5) C14—H14A 0.9600
N3—C16 1.354 (5) C14—H14B 0.9600
O1—C1 1.294 (5) C14—H14C 0.9600
O2—C2 1.315 (5) C15—H15A 0.9600
O3—C12 1.285 (5) C15—H15B 0.9600
C1—C3 1.465 (5) C15—H15C 0.9600
C2—C3 1.405 (5) C16—C17 1.365 (6)
C2—C7 1.455 (6) C16—H16 0.9300
C3—C4 1.425 (6) C17—C18 1.367 (7)
C4—C5 1.342 (6) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.384 (7)
C5—C6 1.423 (6) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.374 (6)
C6—C11 1.412 (6) C19—H19 0.9300
C6—C7 1.433 (6) C20—H20 0.9300
C7—C8 1.406 (6)
O1—Cu1—O1i 159.21 (19) C7—C8—H8 119.5
O1—Cu1—N2 82.65 (13) C8—C9—C10 121.0 (5)
O1i—Cu1—N2 100.87 (13) C8—C9—H9 119.5
O1—Cu1—N2i 100.87 (13) C10—C9—H9 119.5
O1i—Cu1—N2i 82.65 (13) C11—C10—C9 119.2 (4)
N2—Cu1—N2i 160.7 (2) C11—C10—H10 120.4
N1—Cu2—O2 93.11 (13) C9—C10—H10 120.4
N1—Cu2—O3 81.17 (13) C10—C11—C6 122.0 (5)
O2—Cu2—O3 173.00 (13) C10—C11—H11 119.0
N1—Cu2—N3 172.94 (14) C6—C11—H11 119.0
O2—Cu2—N3 92.88 (13) O3—C12—N2 122.2 (4)
O3—Cu2—N3 93.10 (13) O3—C12—C13 117.8 (4)
C1—N1—N2 114.0 (3) N2—C12—C13 120.0 (4)
C1—N1—Cu2 130.2 (3) C12—C13—C15 109.9 (4)
N2—N1—Cu2 115.1 (3) C12—C13—C14 110.1 (4)
C12—N2—N1 109.9 (3) C15—C13—C14 111.2 (5)
C12—N2—Cu1 139.2 (3) C12—C13—H13 108.5
N1—N2—Cu1 110.4 (2) C15—C13—H13 108.5
C20—N3—C16 117.3 (4) C14—C13—H13 108.5
C20—N3—Cu2 122.2 (3) C13—C14—H14A 109.5
C16—N3—Cu2 120.4 (3) C13—C14—H14B 109.5
C1—O1—Cu1 112.8 (3) H14A—C14—H14B 109.5
C2—O2—Cu2 126.6 (3) C13—C14—H14C 109.5
C12—O3—Cu2 111.4 (3) H14A—C14—H14C 109.5
O1—C1—N1 120.1 (4) H14B—C14—H14C 109.5
O1—C1—C3 119.8 (4) C13—C15—H15A 109.5
N1—C1—C3 120.1 (3) C13—C15—H15B 109.5
O2—C2—C3 125.9 (4) H15A—C15—H15B 109.5
O2—C2—C7 116.0 (4) C13—C15—H15C 109.5
C3—C2—C7 118.1 (4) H15A—C15—H15C 109.5
C2—C3—C4 119.4 (4) H15B—C15—H15C 109.5
C2—C3—C1 123.3 (4) N3—C16—C17 123.1 (4)
C4—C3—C1 117.3 (3) N3—C16—H16 118.5
C5—C4—C3 123.1 (4) C17—C16—H16 118.5
C5—C4—H4 118.5 C16—C17—C18 118.6 (4)
C3—C4—H4 118.5 C16—C17—H17 120.7
C4—C5—C6 120.6 (4) C18—C17—H17 120.7
C4—C5—H5 119.7 C17—C18—C19 119.4 (4)
C6—C5—H5 119.7 C17—C18—H18 120.3
C11—C6—C5 123.4 (4) C19—C18—H18 120.3
C11—C6—C7 118.2 (4) C20—C19—C18 118.4 (5)
C5—C6—C7 118.4 (4) C20—C19—H19 120.8
C8—C7—C6 118.6 (4) C18—C19—H19 120.8
C8—C7—C2 120.9 (4) N3—C20—C19 123.2 (4)
C6—C7—C2 120.5 (4) N3—C20—H20 118.4
C9—C8—C7 121.0 (5) C19—C20—H20 118.4
C9—C8—H8 119.5
O2—Cu2—N1—C1 −10.5 (4) N1—C1—C3—C4 174.6 (4)
O3—Cu2—N1—C1 173.6 (4) C2—C3—C4—C5 0.4 (6)
O2—Cu2—N1—N2 179.6 (3) C1—C3—C4—C5 −177.8 (4)
O3—Cu2—N1—N2 3.6 (3) C3—C4—C5—C6 −0.9 (7)
C1—N1—N2—C12 −174.6 (4) C4—C5—C6—C11 179.9 (4)
Cu2—N1—N2—C12 −3.0 (5) C4—C5—C6—C7 −0.1 (6)
C1—N1—N2—Cu1 −0.9 (5) C11—C6—C7—C8 −0.1 (6)
Cu2—N1—N2—Cu1 170.69 (17) C5—C6—C7—C8 179.8 (4)
O1—Cu1—N2—C12 172.5 (5) C11—C6—C7—C2 −178.4 (4)
O1i—Cu1—N2—C12 −28.3 (5) C5—C6—C7—C2 1.6 (6)
N2i—Cu1—N2—C12 70.6 (5) O2—C2—C7—C8 −1.0 (6)
O1—Cu1—N2—N1 1.6 (3) C3—C2—C7—C8 179.8 (4)
O1i—Cu1—N2—N1 160.8 (3) O2—C2—C7—C6 177.1 (4)
N2i—Cu1—N2—N1 −100.4 (3) C3—C2—C7—C6 −2.1 (6)
O2—Cu2—N3—C20 −23.5 (4) C6—C7—C8—C9 −0.4 (7)
O3—Cu2—N3—C20 152.8 (4) C2—C7—C8—C9 177.8 (5)
O2—Cu2—N3—C16 154.6 (3) C7—C8—C9—C10 0.7 (8)
O3—Cu2—N3—C16 −29.1 (3) C8—C9—C10—C11 −0.3 (9)
O1i—Cu1—O1—C1 −103.3 (3) C9—C10—C11—C6 −0.3 (8)
N2—Cu1—O1—C1 −2.0 (3) C5—C6—C11—C10 −179.4 (5)
N2i—Cu1—O1—C1 158.7 (3) C7—C6—C11—C10 0.5 (7)
N1—Cu2—O2—C2 6.4 (3) Cu2—O3—C12—N2 3.1 (6)
N3—Cu2—O2—C2 −169.9 (3) Cu2—O3—C12—C13 −178.6 (3)
N1—Cu2—O3—C12 −3.6 (3) N1—N2—C12—O3 −0.2 (6)
N3—Cu2—O3—C12 172.2 (3) Cu1—N2—C12—O3 −171.2 (3)
Cu1—O1—C1—N1 2.2 (5) N1—N2—C12—C13 −178.4 (4)
Cu1—O1—C1—C3 −179.0 (3) Cu1—N2—C12—C13 10.7 (8)
N2—N1—C1—O1 −0.8 (6) O3—C12—C13—C15 −69.6 (6)
Cu2—N1—C1—O1 −170.8 (3) N2—C12—C13—C15 108.6 (5)
N2—N1—C1—C3 −179.6 (3) O3—C12—C13—C14 53.2 (6)
Cu2—N1—C1—C3 10.4 (6) N2—C12—C13—C14 −128.5 (5)
Cu2—O2—C2—C3 −3.0 (6) C20—N3—C16—C17 0.9 (6)
Cu2—O2—C2—C7 177.9 (3) Cu2—N3—C16—C17 −177.3 (3)
O2—C2—C3—C4 −178.1 (4) N3—C16—C17—C18 −0.7 (7)
C7—C2—C3—C4 1.1 (6) C16—C17—C18—C19 −0.5 (7)
O2—C2—C3—C1 0.1 (7) C17—C18—C19—C20 1.4 (8)
C7—C2—C3—C1 179.2 (4) C16—N3—C20—C19 0.0 (7)
O1—C1—C3—C2 177.6 (4) Cu2—N3—C20—C19 178.2 (4)
N1—C1—C3—C2 −3.6 (6) C18—C19—C20—N3 −1.2 (8)
O1—C1—C3—C4 −4.3 (6)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···Cg1ii 0.93 2.53 3.362 (4) 150

Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2917).

References

  1. Nishio, M. (2004). CrystEngComm, 6, 130–158.
  2. Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett.13, 51–55. [DOI] [PubMed]
  3. Pouralimardan, O., Chamayou, A. C., Janiak, C. & Hassan, H. M. (2007). Inorg. Chim. Acta, 360, 1599–1608.
  4. Saalfrank, R. W. & Bernt, I. (1998). Curr. Opin. Solid State Mater. Sci.3, 407–413.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009003/hb2917sup1.cif

e-65-0m435-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009003/hb2917Isup2.hkl

e-65-0m435-Isup2.hkl (162.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES