Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o710. doi: 10.1107/S1600536809007417

4-(4-Nitro­phenoxy)biphen­yl

Zareen Akhter a,*, Toheed Akhter a, Michael Bolte b, M Amin Baig a, Humaira M Siddiqi a
PMCID: PMC2968949  PMID: 21582447

Abstract

The two phenyl rings of the biphenyl unit of the title compound, C18H13NO3, are almost coplanar [dihedral angle 6.70 (9)°]. The nitro­phenyl ring, on the other hand, is significantly twisted out of the plane of the these two rings, making dihedral angles of 68.83 (4)° with the middle ring and 62.86 (4)° with the end ring. The nitro group is twisted by 12.1 (2)° out of the plane of the phenyl ring to which it is attached.

Related literature

The title compound is a precursor of amine which is a useful curing agent of ep­oxy resins. For the properties and applications of ep­oxy resins, see: Boey & Yap (2001); Bonnaud et al. (2004); de Moris et al. (2007); Van de Grampel et al. (2005); Agag & Takeichi (1999); Kagathera & Parsania (2001); Kagathera & Parsania (2001).graphic file with name e-65-0o710-scheme1.jpg

Experimental

Crystal data

  • C18H13NO3

  • M r = 291.29

  • Monoclinic, Inline graphic

  • a = 9.6435 (7) Å

  • b = 5.8648 (3) Å

  • c = 24.6884 (18) Å

  • β = 95.704 (6)°

  • V = 1389.39 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.44 × 0.37 × 0.13 mm

Data collection

  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: none

  • 16020 measured reflections

  • 2556 independent reflections

  • 2187 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.118

  • S = 1.07

  • 2556 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, Za12. DOI: 10.1107/S1600536809007417/ww2140sup1.cif

e-65-0o710-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007417/ww2140Isup2.hkl

e-65-0o710-Isup2.hkl (125.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan, and the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facilities.

supplementary crystallographic information

Comment

Epoxy resins are a versatile group of crosslinked polymers that has excellent chemical resistance, good electrical insulating properties, good adhesion to glass and metal and can be easily fabricated (Boey & Yap, 2001). Variety of properties helps epoxy resins to meet performance requirements of some demanding applications (Bonnaud et al., 2004). These include areas as diverse as construction, electronics, adhesives and coatings (de Moris et al., 2007). The usefulness of epoxy resins is often limited due to their inherent brittleness arising from crosslinking structure (van de Grampel et al., 2005). Development of approaches for toughening epoxy resins without sacrificing modulus and glass transition temperature (Tg) would lead to an increase in their applications (Kagathera & Parsania, 2001). One such approach is the curing of epoxy resins with different curing agents (Agag & Takeichi, 1999). The title compound is a precursor of amine which is a useful curing agent of epoxy resins.

The two phenyl rings of the biphenyl moiety of the title compound are almost coplanar [dihedral angle 6.70 (9)°]. The nitrophenyl ring, on the other hand, is significantly twisted out of the plane of the these two rings [68.83 (4)° and 62.86 (4)°]. The nitro group is twisted by 12.1 (2)° out of the plane of the phenyl ring to which it is attached.

Experimental

A 500 ml two neck round bottom flask was equipped with condenser and thermometer and was charged with (0.059 moles) biphenyl-4-ol, (0.059 moles) anhydrous potassium carbonate and (0.059 moles) 4-chloronitrobenzene in 180 ml of DMF. Reaction mixture was heated for 24 h at 120°C. The reaction was carried out in the inert atmosphere of nitrogen. Progress of reaction was measured by TLC [1:1, ethyl acetae, n-hexane]. After completion, the reaction mixture was poured into 600 ml of water to give yellow precipitates. These precipitates were collected by filtration and washed with water several times. Recrystallization of the residue in n-hexane afforded the title compound (86%) (m.p 142–144°C)

Refinement

H atoms were located in a difference map, but geometrically positioned and refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C)] and with C—H = 0.95Å.

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the title compound with view onto the ac plane, hydrogen atoms are omitted for clarity.

Crystal data

C18H13NO3 F(000) = 608
Mr = 291.29 Dx = 1.393 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 16639 reflections
a = 9.6435 (7) Å θ = 2.2–25.8°
b = 5.8648 (3) Å µ = 0.10 mm1
c = 24.6884 (18) Å T = 173 K
β = 95.704 (6)° Plate, colourless
V = 1389.39 (16) Å3 0.44 × 0.37 × 0.13 mm
Z = 4

Data collection

STOE IPDS II two-circle-diffractometer 2187 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.052
graphite θmax = 25.5°, θmin = 2.1°
ω scans h = −11→11
16020 measured reflections k = −7→6
2556 independent reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2032P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2556 reflections Δρmax = 0.24 e Å3
200 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.24460 (14) 1.3101 (2) 0.49386 (5) 0.0439 (3)
O1 0.11760 (13) 1.3217 (2) 0.48231 (5) 0.0630 (4)
O2 0.32703 (14) 1.4402 (2) 0.47506 (5) 0.0648 (4)
O3 0.44070 (9) 0.60894 (15) 0.63327 (4) 0.0357 (3)
C1 0.29854 (14) 1.1306 (2) 0.53120 (5) 0.0342 (3)
C2 0.43662 (14) 1.1370 (2) 0.55251 (5) 0.0369 (3)
H2 0.4960 1.2569 0.5431 0.044*
C3 0.48706 (13) 0.9659 (2) 0.58781 (5) 0.0335 (3)
H3 0.5816 0.9675 0.6030 0.040*
C4 0.39846 (12) 0.7919 (2) 0.60091 (5) 0.0289 (3)
C5 0.26016 (13) 0.7870 (3) 0.57875 (5) 0.0360 (3)
H5 0.2008 0.6661 0.5876 0.043*
C6 0.20939 (13) 0.9577 (3) 0.54400 (5) 0.0379 (3)
H6 0.1148 0.9570 0.5290 0.045*
C11 0.55429 (12) 0.6296 (2) 0.67283 (5) 0.0293 (3)
C12 0.65196 (14) 0.4576 (2) 0.67578 (6) 0.0378 (3)
H12 0.6466 0.3408 0.6490 0.045*
C13 0.75837 (14) 0.4557 (2) 0.71807 (5) 0.0369 (3)
H13 0.8249 0.3358 0.7200 0.044*
C14 0.76992 (12) 0.6256 (2) 0.75787 (5) 0.0261 (3)
C15 0.66981 (13) 0.7987 (2) 0.75286 (5) 0.0338 (3)
H15 0.6755 0.9182 0.7790 0.041*
C16 0.56253 (14) 0.8018 (2) 0.71109 (5) 0.0358 (3)
H16 0.4955 0.9211 0.7088 0.043*
C21 0.88361 (12) 0.6232 (2) 0.80367 (5) 0.0268 (3)
C22 0.97567 (14) 0.4414 (2) 0.81201 (6) 0.0383 (3)
H22 0.9662 0.3143 0.7881 0.046*
C23 1.08153 (15) 0.4416 (3) 0.85470 (6) 0.0418 (4)
H23 1.1432 0.3153 0.8594 0.050*
C24 1.09758 (13) 0.6225 (2) 0.89004 (5) 0.0353 (3)
H24 1.1693 0.6218 0.9194 0.042*
C25 1.00812 (16) 0.8051 (3) 0.88227 (6) 0.0470 (4)
H25 1.0183 0.9317 0.9063 0.056*
C26 0.90334 (16) 0.8054 (3) 0.83963 (6) 0.0450 (4)
H26 0.8432 0.9337 0.8348 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0575 (8) 0.0410 (7) 0.0321 (6) 0.0100 (6) −0.0010 (5) 0.0015 (5)
O1 0.0585 (8) 0.0712 (9) 0.0559 (7) 0.0191 (6) −0.0119 (6) 0.0174 (6)
O2 0.0780 (8) 0.0492 (7) 0.0662 (8) −0.0006 (6) 0.0028 (6) 0.0237 (6)
O3 0.0332 (5) 0.0306 (5) 0.0403 (5) −0.0062 (4) −0.0109 (4) 0.0041 (4)
C1 0.0421 (7) 0.0337 (7) 0.0261 (6) 0.0059 (6) 0.0007 (5) −0.0013 (5)
C2 0.0411 (7) 0.0324 (7) 0.0365 (7) −0.0064 (6) 0.0002 (6) −0.0005 (5)
C3 0.0287 (6) 0.0340 (7) 0.0365 (7) −0.0041 (5) −0.0030 (5) −0.0016 (5)
C4 0.0298 (6) 0.0298 (7) 0.0263 (6) 0.0001 (5) −0.0015 (5) −0.0017 (5)
C5 0.0284 (6) 0.0446 (8) 0.0344 (6) −0.0070 (5) −0.0001 (5) 0.0049 (6)
C6 0.0288 (6) 0.0523 (9) 0.0316 (6) 0.0024 (6) −0.0019 (5) 0.0036 (6)
C11 0.0264 (6) 0.0301 (7) 0.0304 (6) −0.0044 (5) −0.0017 (5) 0.0029 (5)
C12 0.0394 (7) 0.0325 (7) 0.0395 (7) 0.0034 (6) −0.0067 (6) −0.0114 (6)
C13 0.0349 (7) 0.0327 (7) 0.0410 (7) 0.0094 (5) −0.0062 (6) −0.0090 (6)
C14 0.0250 (6) 0.0256 (6) 0.0279 (6) −0.0012 (5) 0.0038 (5) −0.0004 (4)
C15 0.0343 (7) 0.0324 (7) 0.0338 (6) 0.0055 (5) −0.0017 (5) −0.0084 (5)
C16 0.0329 (7) 0.0340 (7) 0.0393 (7) 0.0092 (5) −0.0020 (5) −0.0032 (5)
C21 0.0247 (6) 0.0286 (6) 0.0272 (6) −0.0013 (5) 0.0039 (5) −0.0003 (5)
C22 0.0397 (7) 0.0352 (8) 0.0380 (7) 0.0075 (6) −0.0052 (6) −0.0087 (6)
C23 0.0387 (7) 0.0421 (8) 0.0425 (7) 0.0112 (6) −0.0071 (6) −0.0016 (6)
C24 0.0301 (6) 0.0463 (8) 0.0285 (6) −0.0018 (6) −0.0020 (5) 0.0019 (5)
C25 0.0462 (8) 0.0482 (9) 0.0438 (8) 0.0063 (7) −0.0098 (6) −0.0187 (7)
C26 0.0442 (8) 0.0402 (8) 0.0471 (8) 0.0129 (6) −0.0122 (6) −0.0163 (6)

Geometric parameters (Å, °)

N1—O2 1.2260 (17) C13—C14 1.3962 (17)
N1—O1 1.2315 (17) C13—H13 0.9500
N1—C1 1.4608 (17) C14—C15 1.3978 (17)
O3—C4 1.3751 (15) C14—C21 1.4948 (17)
O3—C11 1.3984 (15) C15—C16 1.3864 (18)
C1—C2 1.3828 (19) C15—H15 0.9500
C1—C6 1.386 (2) C16—H16 0.9500
C2—C3 1.3851 (19) C21—C22 1.3895 (18)
C2—H2 0.9500 C21—C26 1.3902 (18)
C3—C4 1.3897 (18) C22—C23 1.3924 (19)
C3—H3 0.9500 C22—H22 0.9500
C4—C5 1.3906 (17) C23—C24 1.373 (2)
C5—C6 1.376 (2) C23—H23 0.9500
C5—H5 0.9500 C24—C25 1.376 (2)
C6—H6 0.9500 C24—H24 0.9500
C11—C12 1.3769 (18) C25—C26 1.385 (2)
C11—C16 1.3798 (18) C25—H25 0.9500
C12—C13 1.3893 (18) C26—H26 0.9500
C12—H12 0.9500
O2—N1—O1 123.04 (13) C12—C13—H13 119.2
O2—N1—C1 118.95 (13) C14—C13—H13 119.2
O1—N1—C1 118.00 (13) C13—C14—C15 116.74 (11)
C4—O3—C11 120.29 (9) C13—C14—C21 121.79 (11)
C2—C1—C6 121.93 (12) C15—C14—C21 121.47 (11)
C2—C1—N1 119.31 (13) C16—C15—C14 122.23 (12)
C6—C1—N1 118.77 (12) C16—C15—H15 118.9
C1—C2—C3 118.97 (12) C14—C15—H15 118.9
C1—C2—H2 120.5 C11—C16—C15 119.17 (12)
C3—C2—H2 120.5 C11—C16—H16 120.4
C2—C3—C4 119.52 (12) C15—C16—H16 120.4
C2—C3—H3 120.2 C22—C21—C26 116.75 (12)
C4—C3—H3 120.2 C22—C21—C14 121.95 (11)
O3—C4—C3 123.69 (11) C26—C21—C14 121.29 (11)
O3—C4—C5 115.44 (11) C21—C22—C23 121.41 (12)
C3—C4—C5 120.76 (12) C21—C22—H22 119.3
C6—C5—C4 119.87 (12) C23—C22—H22 119.3
C6—C5—H5 120.1 C24—C23—C22 120.63 (13)
C4—C5—H5 120.1 C24—C23—H23 119.7
C5—C6—C1 118.94 (12) C22—C23—H23 119.7
C5—C6—H6 120.5 C23—C24—C25 118.90 (12)
C1—C6—H6 120.5 C23—C24—H24 120.5
C12—C11—C16 120.49 (12) C25—C24—H24 120.5
C12—C11—O3 117.24 (11) C24—C25—C26 120.44 (13)
C16—C11—O3 121.95 (11) C24—C25—H25 119.8
C11—C12—C13 119.74 (12) C26—C25—H25 119.8
C11—C12—H12 120.1 C25—C26—C21 121.86 (13)
C13—C12—H12 120.1 C25—C26—H26 119.1
C12—C13—C14 121.62 (12) C21—C26—H26 119.1
O2—N1—C1—C2 12.16 (19) C11—C12—C13—C14 −0.5 (2)
O1—N1—C1—C2 −168.59 (13) C12—C13—C14—C15 −0.5 (2)
O2—N1—C1—C6 −167.52 (13) C12—C13—C14—C21 179.53 (12)
O1—N1—C1—C6 11.73 (19) C13—C14—C15—C16 0.9 (2)
C6—C1—C2—C3 −0.2 (2) C21—C14—C15—C16 −179.06 (12)
N1—C1—C2—C3 −179.88 (11) C12—C11—C16—C15 −0.5 (2)
C1—C2—C3—C4 0.17 (19) O3—C11—C16—C15 172.89 (11)
C11—O3—C4—C3 27.36 (17) C14—C15—C16—C11 −0.5 (2)
C11—O3—C4—C5 −156.29 (11) C13—C14—C21—C22 −6.20 (19)
C2—C3—C4—O3 176.54 (11) C15—C14—C21—C22 173.79 (12)
C2—C3—C4—C5 0.38 (19) C13—C14—C21—C26 172.90 (13)
O3—C4—C5—C6 −177.36 (12) C15—C14—C21—C26 −7.11 (19)
C3—C4—C5—C6 −0.9 (2) C26—C21—C22—C23 0.6 (2)
C4—C5—C6—C1 0.8 (2) C14—C21—C22—C23 179.73 (12)
C2—C1—C6—C5 −0.3 (2) C21—C22—C23—C24 0.2 (2)
N1—C1—C6—C5 179.37 (12) C22—C23—C24—C25 −0.6 (2)
C4—O3—C11—C12 −133.96 (13) C23—C24—C25—C26 0.3 (2)
C4—O3—C11—C16 52.42 (16) C24—C25—C26—C21 0.5 (3)
C16—C11—C12—C13 1.0 (2) C22—C21—C26—C25 −1.0 (2)
O3—C11—C12—C13 −172.73 (12) C14—C21—C26—C25 179.89 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2140).

References

  1. Agag, T. & Takeichi, T. (1999). Polymer, 40, 6557–6563.
  2. Boey, F. Y. C. & Yap, B. H. (2001). Polym. Test.20, 837–845.
  3. Bonnaud, L., Pascault, J. P., Sautereau, H., Zhao, J. Q. & Jia, D. M. (2004). Eur. Polym. J.40, 2637–3643.
  4. Grampel, D. R. van de, Ming, W., van Gennip, W. J. H., van der Velden, F., Laven, J., Niemantsverdriet, J. W. & van der Linde, R. (2005). Polymer, 46, 10531-10537.
  5. Kagathera, V. M. & Parsania, P. H. (2001). Polym. Test.20, 713–716.
  6. Moris, A. B. de, Pereira, A. B., Teixeira, J. P. & Cavaleiro, N. C. (2007). Int. J. Adhes. Adhes.27, 679–686.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, Za12. DOI: 10.1107/S1600536809007417/ww2140sup1.cif

e-65-0o710-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007417/ww2140Isup2.hkl

e-65-0o710-Isup2.hkl (125.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES