Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m442. doi: 10.1107/S1600536809009982

Bis(2,5-dimethyl­anilinium) tetra­chlorido­zincate(II)

Sofiane Souissi a, Wajda Smirani a,*, Mohamed Rzaigui a
PMCID: PMC2968953  PMID: 21582379

Abstract

In the title compound, (C8H12N)2[ZnCl4], the Zn2+ ion adopts a distorted tetra­hedral coordination geometry. In the crystal, the cations and anions are linked by N—H⋯Cl hydrogen bonds, leading to ribbons propagating parallel to the a axis.

Related literature

For related structures, see: Guo et al. (2007); Smirani & Rzaigui (2009). For background on hybrid materials, see: Tao et al. (2003); Bringley & Rajeswaran (2006).graphic file with name e-65-0m442-scheme1.jpg

Experimental

Crystal data

  • (C8H12N)2[ZnCl4]

  • M r = 451.58

  • Monoclinic, Inline graphic

  • a = 7.425 (2) Å

  • b = 12.884 (2) Å

  • c = 22.809 (2) Å

  • β = 96.16 (2)°

  • V = 2169.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.20 × 0.13 × 0.10 mm

Data collection

  • Enraf–Nonius Turbo CAD-4 diffractometer

  • Absorption correction: none

  • 6539 measured reflections

  • 3947 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.033

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.229

  • S = 1.05

  • 3947 reflections

  • 214 parameters

  • H-atom parameters not refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009982/hb2930sup1.cif

e-65-0m442-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009982/hb2930Isup2.hkl

e-65-0m442-Isup2.hkl (189.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—Cl1 2.248 (2)
Zn1—Cl2 2.2502 (16)
Zn1—Cl3 2.274 (2)
Zn1—Cl4 2.2721 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4i 0.89 2.25 3.125 (6) 169
N1—H1B⋯Cl3ii 0.89 2.54 3.304 (6) 145
N1—H1C⋯Cl2iii 0.89 2.31 3.172 (7) 162
N2—H2A⋯Cl1i 0.89 2.34 3.219 (6) 171
N2—H2B⋯Cl4iv 0.89 2.70 3.505 (7) 151
N2—H2C⋯Cl3ii 0.89 2.39 3.262 (6) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Inorganic-organic hybrid materials are of great interest in solid state chemistry due to their enormous variety of intriguing structural topologies and their fascinating properties as well as great potential applications in many fields (Tao et al., 2003; Bringley & Rajeswaran, 2006). Here we report the crystal structure of bis(2,5-xylidinium) tetrachlorozincate (I).

As shown in Fig. 1, the asymmetric unit of (I) is built up from two 2,5-xylidinium cations and one tetrachlorozincate (II) anion. The Zn (II) ion is in a tetrahedral coordination environment composed of four Cl anions (Table 1). The Cl—Zn—Cl bond angles range from 106.13 (8) to 112.46 (8)°. These values indicate that the anionic [ZnCl4]2- tetrahedron is slightly distorted (Guo et al., 2007). The examination of the organic cation shows that the values of the N—C, C—C distances and N—C—C, C—C—C angles range from 1.343 (12) to 1.512 (11) Å and 115.90 (7) to 123.0 (6)°, respectively. These values show no significant difference from those obtained in other crystals involving the same organic groups (Smirani and Rzaigui, 2009).

A projection of the structure along the direction a shows that the [ZnCl4]2- anions are connected via N—H···Cl hydrogen bonds originating from NH3+ groups, so as to built inorganic ribbons at x = 0 and x = 1/2 (Fig. 2, Table 2). The 2,5-xylidinium cations are anchored onto the successive ribbons via hydrogen bonds and electrostatic and van der Waals interactions, to compensate their negative charges.

Experimental

An aqueous solution of 2,5-xylidine, HCl and ZnCl2 in a 2:2:1 molar ratio was prepared and colourless blocks of (I) grew as the water evaporated over the course of a few days.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms: N–H = 0.89, C–H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C,N).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I): displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing in (I) viewed along the a axis.

Crystal data

(C8H12N)2[ZnCl4] F(000) = 928
Mr = 451.58 Dx = 1.383 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 7.425 (2) Å θ = 9.9–11.0°
b = 12.884 (2) Å µ = 1.62 mm1
c = 22.809 (2) Å T = 293 K
β = 96.16 (2)° Block, colourless
V = 2169.5 (7) Å3 0.20 × 0.13 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius Turbo CAD-4 diffractometer θmax = 28.0°, θmin = 2.4°
Radiation source: Enraf Nonius FR590 h = −9→9
Nonprofiled ω scans k = 0→17
6539 measured reflections l = −10→17
3947 independent reflections 2 standard reflections every 120 min
2621 reflections with I > 2σ(I) intensity decay: 5%
Rint = 0.033

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229 H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.1531P)2] where P = (Fo2 + 2Fc2)/3
3947 reflections (Δ/σ)max = 0.012
214 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.0360 (2) 0.16857 (16) 0.12060 (10) 0.0688 (6)
Cl2 0.52806 (19) 0.20922 (13) 0.10654 (9) 0.0537 (5)
Cl3 0.1904 (2) 0.22519 (13) −0.02438 (9) 0.0583 (6)
Cl4 0.3103 (3) −0.02537 (13) 0.04807 (11) 0.0808 (7)
N1 0.2378 (7) 0.7499 (4) −0.0004 (3) 0.0562 (16)
H1A 0.2629 0.8096 0.0183 0.084*
H1B 0.1189 0.7451 −0.0105 0.084*
H1C 0.2950 0.7474 −0.0328 0.084*
C1 0.2981 (7) 0.6631 (4) 0.0386 (3) 0.0414 (17)
C3 0.3769 (8) 0.6844 (4) 0.0940 (3) 0.0490 (19)
H3 0.3922 0.7531 0.1061 0.059*
C4 0.4345 (8) 0.6053 (5) 0.1327 (3) 0.0527 (18)
C2 0.2704 (7) 0.5621 (4) 0.0171 (3) 0.0407 (16)
C5 0.3295 (8) 0.4834 (4) 0.0569 (3) 0.0513 (19)
H5 0.3153 0.4146 0.0451 0.062*
C9 0.1839 (10) 0.5398 (6) −0.0438 (3) 0.062 (2)
H9A 0.0653 0.5703 −0.0490 0.093*
H9B 0.1742 0.4661 −0.0495 0.093*
H9C 0.2567 0.5686 −0.0721 0.093*
C8 0.4080 (9) 0.5049 (5) 0.1130 (4) 0.0530 (19)
H8 0.4441 0.4502 0.1382 0.064*
C7 0.5214 (14) 0.6282 (7) 0.1943 (4) 0.086 (3)
H7A 0.6431 0.6522 0.1925 0.129*
H7B 0.5235 0.5661 0.2177 0.129*
H7C 0.4529 0.6808 0.2119 0.129*
N2 −0.2368 (8) 0.9737 (4) 0.1100 (3) 0.0565 (17)
H2A −0.1525 1.0231 0.1114 0.085*
H2B −0.3429 0.9999 0.0952 0.085*
H2C −0.2061 0.9220 0.0872 0.085*
C10 −0.2512 (9) 0.9346 (4) 0.1696 (3) 0.0456 (17)
C13 −0.1163 (9) 0.8706 (5) 0.1964 (3) 0.0483 (19)
C11 −0.3993 (9) 0.9637 (6) 0.1974 (4) 0.062 (2)
H11 −0.4863 1.0074 0.1782 0.075*
C14 0.0465 (11) 0.8399 (7) 0.1675 (4) 0.082 (3)
H14A 0.0186 0.7799 0.1433 0.123*
H14B 0.1443 0.8240 0.1971 0.123*
H14C 0.0813 0.8961 0.1434 0.123*
C12 −0.4195 (10) 0.9281 (7) 0.2541 (4) 0.065 (2)
C16 −0.2860 (11) 0.8619 (6) 0.2797 (4) 0.062 (2)
H16 −0.2972 0.8346 0.3169 0.075*
C15 −0.1412 (11) 0.8360 (6) 0.2523 (4) 0.062 (2)
H15 −0.0538 0.7929 0.2718 0.075*
C17 −0.5803 (14) 0.9593 (10) 0.2849 (5) 0.120 (4)
H17A −0.6893 0.9349 0.2627 0.180*
H17B −0.5844 1.0335 0.2879 0.180*
H17C −0.5701 0.9293 0.3236 0.180*
Zn1 0.26302 (8) 0.14604 (5) 0.06412 (4) 0.0418 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0506 (9) 0.0874 (13) 0.0709 (18) 0.0007 (8) 0.0174 (9) −0.0083 (11)
Cl2 0.0423 (7) 0.0579 (9) 0.0584 (15) −0.0086 (6) −0.0064 (7) −0.0055 (8)
Cl3 0.0709 (10) 0.0511 (9) 0.0506 (16) −0.0023 (7) −0.0040 (9) 0.0047 (8)
Cl4 0.1136 (16) 0.0354 (8) 0.0909 (19) −0.0001 (9) −0.0004 (13) −0.0092 (9)
N1 0.067 (3) 0.039 (3) 0.063 (5) 0.003 (2) 0.004 (3) 0.008 (3)
C1 0.036 (3) 0.033 (3) 0.056 (6) 0.003 (2) 0.012 (3) 0.003 (3)
C3 0.047 (3) 0.036 (3) 0.063 (6) 0.000 (2) 0.001 (3) −0.004 (3)
C4 0.048 (3) 0.052 (3) 0.057 (6) −0.001 (3) −0.001 (3) 0.004 (3)
C2 0.037 (3) 0.041 (3) 0.046 (5) −0.004 (2) 0.012 (3) −0.001 (3)
C5 0.047 (3) 0.033 (3) 0.076 (6) −0.001 (2) 0.011 (3) 0.005 (3)
C9 0.066 (4) 0.056 (4) 0.064 (7) −0.008 (3) 0.006 (4) −0.012 (4)
C8 0.053 (3) 0.042 (3) 0.063 (6) 0.005 (3) 0.000 (4) 0.008 (3)
C7 0.101 (7) 0.075 (5) 0.077 (8) −0.001 (5) −0.014 (6) 0.001 (5)
N2 0.075 (4) 0.054 (3) 0.041 (5) 0.004 (3) 0.005 (3) 0.008 (3)
C10 0.060 (4) 0.047 (3) 0.029 (5) −0.006 (3) 0.000 (3) 0.001 (3)
C13 0.057 (4) 0.053 (3) 0.033 (6) −0.003 (3) −0.004 (3) 0.001 (3)
C11 0.058 (4) 0.069 (4) 0.058 (7) 0.013 (3) −0.003 (4) 0.000 (4)
C14 0.068 (5) 0.109 (7) 0.067 (8) 0.026 (5) 0.002 (5) −0.002 (5)
C12 0.067 (4) 0.087 (5) 0.042 (7) −0.006 (4) 0.012 (4) −0.002 (4)
C16 0.075 (5) 0.076 (5) 0.034 (6) −0.009 (4) −0.001 (4) 0.009 (4)
C15 0.068 (5) 0.065 (4) 0.051 (7) 0.006 (3) −0.008 (4) 0.007 (4)
C17 0.085 (6) 0.195 (13) 0.082 (9) 0.028 (7) 0.020 (6) −0.011 (8)
Zn1 0.0383 (4) 0.0382 (4) 0.0481 (8) −0.0011 (3) 0.0007 (3) −0.0031 (3)

Geometric parameters (Å, °)

Zn1—Cl1 2.248 (2) C7—H7B 0.9600
Zn1—Cl2 2.2502 (16) C7—H7C 0.9600
Zn1—Cl3 2.274 (2) N2—C10 1.463 (9)
Zn1—Cl4 2.2721 (18) N2—H2A 0.8900
N1—C1 1.468 (8) N2—H2B 0.8900
N1—H1A 0.8900 N2—H2C 0.8900
N1—H1B 0.8900 C10—C11 1.379 (10)
N1—H1C 0.8900 C10—C13 1.388 (9)
C1—C3 1.364 (10) C13—C15 1.382 (11)
C1—C2 1.399 (8) C13—C14 1.491 (11)
C3—C4 1.386 (9) C11—C12 1.396 (11)
C3—H3 0.9300 C11—H11 0.9300
C4—C8 1.377 (9) C14—H14A 0.9600
C4—C7 1.512 (11) C14—H14B 0.9600
C2—C5 1.400 (9) C14—H14C 0.9600
C2—C9 1.495 (10) C12—C16 1.388 (11)
C5—C8 1.376 (10) C12—C17 1.503 (13)
C5—H5 0.9300 C16—C15 1.343 (12)
C9—H9A 0.9600 C16—H16 0.9300
C9—H9B 0.9600 C15—H15 0.9300
C9—H9C 0.9600 C17—H17A 0.9600
C8—H8 0.9300 C17—H17B 0.9600
C7—H7A 0.9600 C17—H17C 0.9600
C1—N1—H1A 109.5 C10—N2—H2C 109.5
C1—N1—H1B 109.5 H2A—N2—H2C 109.5
H1A—N1—H1B 109.5 H2B—N2—H2C 109.5
C1—N1—H1C 109.5 C11—C10—C13 122.2 (7)
H1A—N1—H1C 109.5 C11—C10—N2 118.4 (6)
H1B—N1—H1C 109.5 C13—C10—N2 119.5 (6)
C3—C1—C2 123.0 (6) C15—C13—C10 115.9 (7)
C3—C1—N1 118.8 (5) C15—C13—C14 121.2 (7)
C2—C1—N1 118.2 (6) C10—C13—C14 122.9 (7)
C1—C3—C4 121.0 (6) C10—C11—C12 120.5 (7)
C1—C3—H3 119.5 C10—C11—H11 119.8
C4—C3—H3 119.5 C12—C11—H11 119.8
C8—C4—C3 117.4 (7) C13—C14—H14A 109.5
C8—C4—C7 121.2 (7) C13—C14—H14B 109.5
C3—C4—C7 121.3 (7) H14A—C14—H14B 109.5
C1—C2—C5 115.0 (6) C13—C14—H14C 109.5
C1—C2—C9 122.5 (6) H14A—C14—H14C 109.5
C5—C2—C9 122.5 (6) H14B—C14—H14C 109.5
C8—C5—C2 122.0 (6) C16—C12—C11 116.7 (7)
C8—C5—H5 119.0 C16—C12—C17 122.3 (9)
C2—C5—H5 119.0 C11—C12—C17 121.0 (8)
C2—C9—H9A 109.5 C15—C16—C12 121.8 (8)
C2—C9—H9B 109.5 C15—C16—H16 119.1
H9A—C9—H9B 109.5 C12—C16—H16 119.1
C2—C9—H9C 109.5 C16—C15—C13 122.9 (7)
H9A—C9—H9C 109.5 C16—C15—H15 118.5
H9B—C9—H9C 109.5 C13—C15—H15 118.5
C5—C8—C4 121.6 (6) C12—C17—H17A 109.5
C5—C8—H8 119.2 C12—C17—H17B 109.5
C4—C8—H8 119.2 H17A—C17—H17B 109.5
C4—C7—H7A 109.5 C12—C17—H17C 109.5
C4—C7—H7B 109.5 H17A—C17—H17C 109.5
H7A—C7—H7B 109.5 H17B—C17—H17C 109.5
C4—C7—H7C 109.5 Cl1—Zn1—Cl2 112.46 (8)
H7A—C7—H7C 109.5 Cl1—Zn1—Cl4 110.87 (9)
H7B—C7—H7C 109.5 Cl2—Zn1—Cl4 106.13 (8)
C10—N2—H2A 109.5 Cl1—Zn1—Cl3 109.26 (8)
C10—N2—H2B 109.5 Cl2—Zn1—Cl3 109.42 (7)
H2A—N2—H2B 109.5 Cl4—Zn1—Cl3 108.59 (9)
C2—C1—C3—C4 −0.1 (9) C11—C10—C13—C15 1.3 (10)
N1—C1—C3—C4 179.4 (6) N2—C10—C13—C15 −179.2 (6)
C1—C3—C4—C8 −0.4 (10) C11—C10—C13—C14 −178.8 (7)
C1—C3—C4—C7 −179.8 (7) N2—C10—C13—C14 0.7 (10)
C3—C1—C2—C5 0.1 (8) C13—C10—C11—C12 −0.7 (11)
N1—C1—C2—C5 −179.3 (5) N2—C10—C11—C12 179.7 (6)
C3—C1—C2—C9 −180.0 (6) C10—C11—C12—C16 −1.0 (11)
N1—C1—C2—C9 0.6 (9) C10—C11—C12—C17 180.0 (9)
C1—C2—C5—C8 0.3 (9) C11—C12—C16—C15 2.2 (12)
C9—C2—C5—C8 −179.6 (6) C17—C12—C16—C15 −178.7 (9)
C2—C5—C8—C4 −0.8 (10) C12—C16—C15—C13 −1.8 (12)
C3—C4—C8—C5 0.8 (10) C10—C13—C15—C16 0.0 (11)
C7—C4—C8—C5 −179.8 (7) C14—C13—C15—C16 −179.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl4i 0.89 2.25 3.125 (6) 169
N1—H1B···Cl3ii 0.89 2.54 3.304 (6) 145
N1—H1C···Cl2iii 0.89 2.31 3.172 (7) 162
N2—H2A···Cl1i 0.89 2.34 3.219 (6) 171
N2—H2B···Cl4iv 0.89 2.70 3.505 (7) 151
N2—H2C···Cl3ii 0.89 2.39 3.262 (6) 168

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2930).

References

  1. Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83. [DOI] [PMC free article] [PubMed]
  9. Tao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009982/hb2930sup1.cif

e-65-0m442-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009982/hb2930Isup2.hkl

e-65-0m442-Isup2.hkl (189.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES