Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o845. doi: 10.1107/S1600536809008356

4-Benz­yloxy-3-(2,4-dichloro­phen­yl)-1-oxaspiro­[4.5]dec-3-en-2-one

Liang-zhong Xu a,*, Qun-qun Su a, Jin Huang a, Shan-qi Sun a
PMCID: PMC2968969  PMID: 21582564

Abstract

In the title compound, C22H20Cl2O3, the cyclo­hexyl ring adopts a chair conformation. The furanyl ring plane makes dihedral angles of 70.10 (2) and 86.12 (3)° with the 2,4-dichloro­phenyl ring and aromatic ring of the benzyl group, respectively. The crystal structure features weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For similar compounds, see: Bretschneider et al. (2003). For the synthesis, see: Yu et al. (1994); Song et al. (2008). graphic file with name e-65-0o845-scheme1.jpg

Experimental

Crystal data

  • C22H20Cl2O3

  • M r = 403.28

  • Triclinic, Inline graphic

  • a = 7.2624 (15) Å

  • b = 12.117 (2) Å

  • c = 12.679 (3) Å

  • α = 63.30 (2)°

  • β = 87.67 (3)°

  • γ = 73.32 (1)°

  • V = 949.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.10 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.938, T max = 0.965

  • 7095 measured reflections

  • 3328 independent reflections

  • 2376 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.078

  • S = 1.03

  • 3328 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008356/ng2556sup1.cif

e-65-0o845-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008356/ng2556Isup2.hkl

e-65-0o845-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.97 2.54 3.477 (2) 162
C2—H2B⋯Cl1ii 0.97 2.69 3.5051 (19) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The title compound (I) was prepared as part of a project in search for new compounds with biological activity (Bretschneider et al., 2003). We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Bretschneider et al., 2003). The cyclohexane ring (C1—C6) adopts a chair conformation. The furan ring (O1/C1/C7/C8/C9) plane forms dihedral angles of 71.10 (2)° and 86.12 (3)° with the benzene ring (C10—C15) and the benzyl plane (C16—C22) respectively. In addition to van der Waals forces, the structure is stabilized by weak C—H···O and C—H···Cl hydrogen bonds.

Experimental

3-(2,4-Dichlorophenyl)-2,4-dioxo-1-oxaspiro[4.5]decane 3.13 g (10.0 mmol), was suspended in a solution of sodium carbonate 0.54 g (5.1 mmol) in 20 ml of water in a flask equipped with stirrer, water separator and reflux condenser. Toluene (40 ml) was added after 0.5 h, the mixture was heated to dehydration to distil the toluene solvent. Then 1-(chloromethyl)benzene 1.39 g (11.0 mmol) and N,N-dimethylformamide(DMF) solvent (20 ml) were added while maintaining the temperature at 373 K for 4 h. Upon cooling at room temperature water (20 ml) was added. The mixture was extracted with CH2Cl2 (15 ml) and the organic layer was washed with water and dried over sodium sulfate. The excess CH2Cl2 was removedon a water vacuum pump to obtain the oily product. Crystallized from methanol to afford the title compound 2.95 g (80% yield) (Yu et al., 1994; Song et al., 2008). Single crystals suitable for X-ray diffraction were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C22H20Cl2O3 Z = 2
Mr = 403.28 F(000) = 420
Triclinic, P1 Dx = 1.410 Mg m3
Hall symbol: -p 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2624 (15) Å Cell parameters from 2983 reflections
b = 12.117 (2) Å θ = 2.0–27.9°
c = 12.679 (3) Å µ = 0.36 mm1
α = 63.30 (2)° T = 113 K
β = 87.67 (3)° Block, colorless
γ = 73.32 (1)° 0.18 × 0.16 × 0.10 mm
V = 949.8 (3) Å3

Data collection

Rigaku Saturn diffractometer 3328 independent reflections
Radiation source: rotating anode 2376 reflections with I > 2σ(I)
confocal Rint = 0.039
ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −8→8
Tmin = 0.938, Tmax = 0.965 k = −14→10
7095 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3
3328 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.74501 (6) 0.33929 (4) 1.10256 (4) 0.02229 (14)
Cl2 1.16128 (7) −0.12117 (5) 1.44683 (4) 0.02817 (15)
O1 0.65050 (16) 0.34607 (11) 0.77085 (11) 0.0161 (3)
O2 0.93505 (17) 0.29879 (11) 0.86875 (11) 0.0195 (3)
O3 0.37612 (16) 0.16179 (11) 0.97360 (11) 0.0159 (3)
C1 0.4713 (2) 0.31322 (16) 0.79970 (16) 0.0139 (4)
C2 0.3139 (3) 0.43289 (16) 0.79041 (17) 0.0181 (4)
H2A 0.1982 0.4093 0.8194 0.022*
H2B 0.3566 0.4644 0.8402 0.022*
C3 0.2661 (3) 0.54029 (17) 0.66320 (18) 0.0236 (5)
H3A 0.3781 0.5699 0.6365 0.028*
H3B 0.1616 0.6130 0.6600 0.028*
C4 0.2071 (3) 0.49221 (18) 0.58136 (19) 0.0313 (5)
H4A 0.0885 0.4698 0.6038 0.038*
H4B 0.1827 0.5608 0.5003 0.038*
C5 0.3647 (3) 0.37423 (18) 0.58838 (17) 0.0295 (5)
H5A 0.4781 0.3995 0.5568 0.035*
H5B 0.3201 0.3423 0.5396 0.035*
C6 0.4199 (3) 0.26580 (16) 0.71537 (16) 0.0199 (4)
H6A 0.3128 0.2307 0.7424 0.024*
H6B 0.5296 0.1967 0.7168 0.024*
C7 0.5194 (2) 0.21147 (15) 0.92748 (16) 0.0131 (4)
C8 0.6971 (2) 0.19522 (15) 0.96996 (16) 0.0135 (4)
C9 0.7788 (3) 0.28199 (16) 0.87102 (17) 0.0156 (4)
C10 0.8070 (2) 0.11567 (16) 1.08853 (16) 0.0129 (4)
C11 0.8439 (2) 0.17346 (16) 1.15576 (16) 0.0149 (4)
C12 0.9524 (2) 0.10299 (16) 1.26515 (16) 0.0172 (4)
H12 0.9773 0.1439 1.3075 0.021*
C13 1.0228 (2) −0.02970 (17) 1.30966 (16) 0.0174 (4)
C14 0.9885 (2) −0.09177 (16) 1.24730 (17) 0.0176 (4)
H14 1.0361 −0.1814 1.2790 0.021*
C15 0.8826 (2) −0.01880 (16) 1.13717 (16) 0.0160 (4)
H15 0.8612 −0.0603 1.0945 0.019*
C16 0.3825 (3) 0.08932 (16) 1.10127 (16) 0.0162 (4)
H16A 0.5050 0.0213 1.1312 0.019*
H16B 0.2807 0.0483 1.1194 0.019*
C17 0.3590 (2) 0.17132 (17) 1.16439 (17) 0.0168 (4)
C18 0.2414 (3) 0.29913 (17) 1.11236 (18) 0.0202 (4)
H18 0.1803 0.3361 1.0361 0.024*
C19 0.2147 (3) 0.37185 (19) 1.17361 (19) 0.0278 (5)
H19 0.1380 0.4579 1.1378 0.033*
C20 0.3018 (3) 0.3168 (2) 1.2875 (2) 0.0347 (6)
H20 0.2826 0.3653 1.3289 0.042*
C21 0.4176 (3) 0.1892 (2) 1.3404 (2) 0.0344 (6)
H21 0.4759 0.1520 1.4175 0.041*
C22 0.4468 (3) 0.11721 (19) 1.27877 (18) 0.0248 (5)
H22 0.5260 0.0318 1.3143 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0253 (3) 0.0150 (2) 0.0274 (3) −0.00301 (19) −0.0009 (2) −0.0119 (2)
Cl2 0.0312 (3) 0.0302 (3) 0.0146 (3) −0.0031 (2) −0.0051 (2) −0.0062 (2)
O1 0.0157 (7) 0.0161 (6) 0.0147 (7) −0.0071 (5) 0.0021 (5) −0.0042 (6)
O2 0.0140 (7) 0.0208 (7) 0.0240 (8) −0.0086 (6) 0.0042 (6) −0.0087 (6)
O3 0.0160 (7) 0.0181 (6) 0.0130 (8) −0.0081 (5) 0.0023 (6) −0.0049 (6)
C1 0.0143 (9) 0.0136 (9) 0.0138 (10) −0.0076 (7) 0.0019 (8) −0.0042 (8)
C2 0.0171 (10) 0.0167 (9) 0.0189 (11) −0.0040 (8) 0.0009 (8) −0.0075 (8)
C3 0.0210 (11) 0.0182 (10) 0.0227 (12) −0.0021 (8) −0.0022 (9) −0.0039 (9)
C4 0.0354 (13) 0.0295 (12) 0.0186 (12) −0.0115 (10) −0.0100 (10) −0.0001 (10)
C5 0.0476 (14) 0.0311 (11) 0.0138 (12) −0.0214 (10) −0.0007 (10) −0.0077 (9)
C6 0.0280 (11) 0.0184 (10) 0.0169 (11) −0.0105 (8) 0.0028 (9) −0.0090 (9)
C7 0.0147 (9) 0.0117 (9) 0.0163 (11) −0.0054 (7) 0.0050 (8) −0.0087 (8)
C8 0.0141 (9) 0.0114 (9) 0.0160 (11) −0.0030 (7) 0.0024 (8) −0.0078 (8)
C9 0.0159 (10) 0.0128 (9) 0.0179 (11) −0.0018 (8) 0.0011 (8) −0.0082 (8)
C10 0.0080 (9) 0.0159 (9) 0.0154 (11) −0.0037 (7) 0.0028 (7) −0.0076 (8)
C11 0.0127 (9) 0.0136 (9) 0.0177 (11) −0.0039 (7) 0.0027 (8) −0.0068 (8)
C12 0.0178 (10) 0.0214 (10) 0.0162 (11) −0.0090 (8) 0.0040 (8) −0.0102 (9)
C13 0.0136 (9) 0.0225 (10) 0.0126 (11) −0.0043 (8) 0.0012 (8) −0.0058 (8)
C14 0.0183 (10) 0.0147 (9) 0.0168 (11) −0.0041 (8) 0.0034 (8) −0.0053 (8)
C15 0.0144 (10) 0.0182 (9) 0.0187 (11) −0.0074 (8) 0.0047 (8) −0.0101 (8)
C16 0.0166 (10) 0.0157 (9) 0.0140 (11) −0.0091 (8) 0.0046 (8) −0.0025 (8)
C17 0.0132 (9) 0.0230 (10) 0.0162 (11) −0.0114 (8) 0.0073 (8) −0.0075 (8)
C18 0.0197 (10) 0.0246 (10) 0.0174 (11) −0.0094 (8) 0.0071 (8) −0.0093 (9)
C19 0.0269 (11) 0.0285 (11) 0.0358 (14) −0.0124 (9) 0.0150 (10) −0.0199 (10)
C20 0.0326 (13) 0.0555 (15) 0.0384 (15) −0.0225 (11) 0.0141 (11) −0.0358 (13)
C21 0.0277 (12) 0.0596 (15) 0.0243 (13) −0.0180 (11) 0.0051 (10) −0.0236 (12)
C22 0.0195 (11) 0.0326 (11) 0.0194 (12) −0.0082 (9) 0.0024 (9) −0.0091 (10)

Geometric parameters (Å, °)

Cl1—C11 1.7325 (18) C8—C9 1.464 (3)
Cl2—C13 1.7420 (19) C8—C10 1.477 (2)
O1—C9 1.371 (2) C10—C15 1.396 (2)
O1—C1 1.454 (2) C10—C11 1.397 (2)
O2—C9 1.206 (2) C11—C12 1.383 (2)
O3—C7 1.335 (2) C12—C13 1.379 (2)
O3—C16 1.449 (2) C12—H12 0.9300
C1—C7 1.507 (3) C13—C14 1.382 (2)
C1—C6 1.523 (2) C14—C15 1.382 (2)
C1—C2 1.526 (2) C14—H14 0.9300
C2—C3 1.522 (3) C15—H15 0.9300
C2—H2A 0.9700 C16—C17 1.504 (2)
C2—H2B 0.9700 C16—H16A 0.9700
C3—C4 1.524 (3) C16—H16B 0.9700
C3—H3A 0.9700 C17—C22 1.386 (3)
C3—H3B 0.9700 C17—C18 1.390 (2)
C4—C5 1.522 (3) C18—C19 1.386 (3)
C4—H4A 0.9700 C18—H18 0.9300
C4—H4B 0.9700 C19—C20 1.377 (3)
C5—C6 1.526 (3) C19—H19 0.9300
C5—H5A 0.9700 C20—C21 1.384 (3)
C5—H5B 0.9700 C20—H20 0.9300
C6—H6A 0.9700 C21—C22 1.382 (3)
C6—H6B 0.9700 C21—H21 0.9300
C7—C8 1.345 (2) C22—H22 0.9300
C9—O1—C1 109.44 (14) O2—C9—C8 129.10 (17)
C7—O3—C16 119.28 (14) O1—C9—C8 110.02 (15)
O1—C1—C7 102.54 (14) C15—C10—C11 117.08 (16)
O1—C1—C6 109.19 (15) C15—C10—C8 122.16 (15)
C7—C1—C6 114.33 (14) C11—C10—C8 120.74 (14)
O1—C1—C2 108.53 (13) C12—C11—C10 122.57 (15)
C7—C1—C2 109.95 (15) C12—C11—Cl1 118.35 (13)
C6—C1—C2 111.78 (14) C10—C11—Cl1 119.05 (13)
C3—C2—C1 111.71 (16) C13—C12—C11 118.09 (16)
C3—C2—H2A 109.3 C13—C12—H12 121.0
C1—C2—H2A 109.3 C11—C12—H12 121.0
C3—C2—H2B 109.3 C12—C13—C14 121.61 (16)
C1—C2—H2B 109.3 C12—C13—Cl2 119.22 (14)
H2A—C2—H2B 107.9 C14—C13—Cl2 119.17 (14)
C2—C3—C4 110.71 (16) C13—C14—C15 119.12 (16)
C2—C3—H3A 109.5 C13—C14—H14 120.4
C4—C3—H3A 109.5 C15—C14—H14 120.4
C2—C3—H3B 109.5 C14—C15—C10 121.52 (16)
C4—C3—H3B 109.5 C14—C15—H15 119.2
H3A—C3—H3B 108.1 C10—C15—H15 119.2
C5—C4—C3 110.90 (16) O3—C16—C17 113.48 (14)
C5—C4—H4A 109.5 O3—C16—H16A 108.9
C3—C4—H4A 109.5 C17—C16—H16A 108.9
C5—C4—H4B 109.5 O3—C16—H16B 108.9
C3—C4—H4B 109.5 C17—C16—H16B 108.9
H4A—C4—H4B 108.0 H16A—C16—H16B 107.7
C4—C5—C6 112.11 (18) C22—C17—C18 119.09 (17)
C4—C5—H5A 109.2 C22—C17—C16 119.83 (16)
C6—C5—H5A 109.2 C18—C17—C16 120.98 (16)
C4—C5—H5B 109.2 C19—C18—C17 120.35 (19)
C6—C5—H5B 109.2 C19—C18—H18 119.8
H5A—C5—H5B 107.9 C17—C18—H18 119.8
C1—C6—C5 111.93 (15) C20—C19—C18 120.03 (18)
C1—C6—H6A 109.2 C20—C19—H19 120.0
C5—C6—H6A 109.2 C18—C19—H19 120.0
C1—C6—H6B 109.2 C19—C20—C21 120.01 (19)
C5—C6—H6B 109.2 C19—C20—H20 120.0
H6A—C6—H6B 107.9 C21—C20—H20 120.0
O3—C7—C8 134.71 (17) C22—C21—C20 120.0 (2)
O3—C7—C1 113.78 (15) C22—C21—H21 120.0
C8—C7—C1 111.46 (17) C20—C21—H21 120.0
C7—C8—C9 106.26 (16) C21—C22—C17 120.49 (18)
C7—C8—C10 133.14 (17) C21—C22—H22 119.8
C9—C8—C10 120.56 (15) C17—C22—H22 119.8
O2—C9—O1 120.86 (17)
C9—O1—C1—C7 −5.26 (15) C10—C8—C9—O1 −179.53 (13)
C9—O1—C1—C6 −126.89 (14) C7—C8—C10—C15 71.9 (2)
C9—O1—C1—C2 111.04 (15) C9—C8—C10—C15 −110.56 (19)
O1—C1—C2—C3 66.38 (18) C7—C8—C10—C11 −109.8 (2)
C7—C1—C2—C3 177.80 (15) C9—C8—C10—C11 67.8 (2)
C6—C1—C2—C3 −54.1 (2) C15—C10—C11—C12 0.9 (3)
C1—C2—C3—C4 56.4 (2) C8—C10—C11—C12 −177.49 (16)
C2—C3—C4—C5 −56.7 (2) C15—C10—C11—Cl1 −177.30 (14)
C3—C4—C5—C6 55.2 (2) C8—C10—C11—Cl1 4.3 (2)
O1—C1—C6—C5 −68.13 (19) C10—C11—C12—C13 −1.4 (3)
C7—C1—C6—C5 177.68 (15) Cl1—C11—C12—C13 176.86 (14)
C2—C1—C6—C5 52.0 (2) C11—C12—C13—C14 0.6 (3)
C4—C5—C6—C1 −52.9 (2) C11—C12—C13—Cl2 179.62 (13)
C16—O3—C7—C8 13.0 (3) C12—C13—C14—C15 0.6 (3)
C16—O3—C7—C1 −164.16 (13) Cl2—C13—C14—C15 −178.43 (14)
O1—C1—C7—O3 −177.66 (12) C13—C14—C15—C10 −1.0 (3)
C6—C1—C7—O3 −59.62 (19) C11—C10—C15—C14 0.3 (3)
C2—C1—C7—O3 67.05 (18) C8—C10—C15—C14 178.71 (16)
O1—C1—C7—C8 4.54 (17) C7—O3—C16—C17 67.88 (19)
C6—C1—C7—C8 122.59 (17) O3—C16—C17—C22 −149.82 (16)
C2—C1—C7—C8 −110.74 (16) O3—C16—C17—C18 33.8 (2)
O3—C7—C8—C9 −179.26 (16) C22—C17—C18—C19 0.9 (3)
C1—C7—C8—C9 −2.11 (18) C16—C17—C18—C19 177.25 (18)
O3—C7—C8—C10 −1.4 (3) C17—C18—C19—C20 −1.3 (3)
C1—C7—C8—C10 175.71 (16) C18—C19—C20—C21 0.7 (3)
C1—O1—C9—O2 −177.12 (14) C19—C20—C21—C22 0.3 (3)
C1—O1—C9—C8 4.38 (16) C20—C21—C22—C17 −0.7 (3)
C7—C8—C9—O2 −179.72 (16) C18—C17—C22—C21 0.1 (3)
C10—C8—C9—O2 2.1 (3) C16—C17—C22—C21 −176.28 (18)
C7—C8—C9—O1 −1.38 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O2i 0.97 2.54 3.477 (2) 162
C2—H2B···Cl1ii 0.97 2.69 3.5051 (19) 142

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2556).

References

  1. Bretschneider, T., Benet-Buchholz, J., Fischer, R. & Nauen, R. (2003). Chimia, 57, 697–701.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Song, R. F. (2008). Fine Chem.25, 708–709.
  5. Yu, M. X. (1994). Pestic. Sci.33, 14–15.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008356/ng2556sup1.cif

e-65-0o845-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008356/ng2556Isup2.hkl

e-65-0o845-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES