Abstract
In the crystal structure of the title compound, C13H11Cl2NO2S, the conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche with respect to the S=O bonds. The C—S(O2)—N(H)—C torsion angle is 74.8 (4)°, indicating that the molecule is bent at the S atom. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur. An intramolecular N—H⋯Cl interaction is also present.
Related literature
For related structures of N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007 ▶); Gowda et al. (2009a ▶,b
▶); Perlovich et al. (2006 ▶).
Experimental
Crystal data
C13H11Cl2NO2S
M r = 316.19
Triclinic,
a = 8.089 (2) Å
b = 8.096 (2) Å
c = 10.946 (3) Å
α = 96.00 (1)°
β = 97.11 (2)°
γ = 105.67 (2)°
V = 677.7 (3) Å3
Z = 2
Cu Kα radiation
μ = 5.73 mm−1
T = 299 K
0.45 × 0.33 × 0.08 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.150, T max = 0.640
2684 measured reflections
2414 independent reflections
1932 reflections with I > 2σ(I)
R int = 0.037
3 standard reflections frequency: 120 min intensity decay: 1.0%
Refinement
R[F 2 > 2σ(F 2)] = 0.083
wR(F 2) = 0.236
S = 1.05
2414 reflections
177 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.60 e Å−3
Δρmin = −0.67 e Å−3
Data collection: CAD-4-PC (Enraf–Nonius, 1996 ▶); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007880/tk2384sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007880/tk2384Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯O2i | 0.88 (5) | 2.17 (5) | 2.994 (5) | 157 (4) |
| N1—H1N⋯Cl2 | 0.88 (5) | 2.67 (5) | 3.011 (4) | 104 (4) |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al. 2008a,b, 2009), the structure of 2-methyl-4-chloro-N-(2-chlorophenyl)benzenesulfonamide (I) has been determined. The conformations of the N—C bond in the C—S(O2)—N(H)—C segment are trans and gauche with respect to the S=O bonds (Fig. 1). The torsion angle of C1—S1—N1—C1 is 74.8 (4)°, indicating the molecule is bent at the S1 atom. The two benzene rings are tilted relative to each other by 45.5 (2)°, compared with the values of 86.6 (2)° (molecule 1) and 83.0 (2)° (molecule 2), in the two independent molecules of 2-methyl-4-chloro-N-(phenyl)-benzenesulfonamide (II) (Gowda et al., 2009). Bond distance parameters in (I) are similar to those observed in (II), 2,4-dimethyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2008b) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal structure comprises the packing of centrosymmetric molecules connected via N—H···O hydrogen bonds (Table 1 & Fig. 2).
Experimental
m-Chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of HCl subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 2-chloroaniline in a stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2-methyl-4-chloro-N-(2-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown from an ethanolic solution by slow evaporation at room temperature.
Refinement
The N-bound H atom was located in difference map and its positional parameters refined; N—H = 0.88 (5) Å. The remaining H atoms were positioned with idealized geometries using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 x Ueq(parent atom).
Figures
Fig. 1.
Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.
Crystal data
| C13H11Cl2NO2S | Z = 2 |
| Mr = 316.19 | F(000) = 324 |
| Triclinic, P1 | Dx = 1.549 Mg m−3 |
| Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54180 Å |
| a = 8.089 (2) Å | Cell parameters from 25 reflections |
| b = 8.096 (2) Å | θ = 5.7–19.7° |
| c = 10.946 (3) Å | µ = 5.73 mm−1 |
| α = 96.00 (1)° | T = 299 K |
| β = 97.11 (2)° | Plate, colourless |
| γ = 105.67 (2)° | 0.45 × 0.33 × 0.08 mm |
| V = 677.7 (3) Å3 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1932 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.037 |
| graphite | θmax = 66.9°, θmin = 4.1° |
| ω scans | h = −9→1 |
| Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
| Tmin = 0.150, Tmax = 0.640 | l = −12→13 |
| 2684 measured reflections | 3 standard reflections every 120 min |
| 2414 independent reflections | intensity decay: 1.0% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.236 | w = 1/[σ2(Fo2) + (0.179P)2 + 0.1079P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.008 |
| 2414 reflections | Δρmax = 0.60 e Å−3 |
| 177 parameters | Δρmin = −0.67 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.039 (6) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.35954 (18) | 0.30027 (19) | 0.56480 (12) | 0.0932 (5) | |
| Cl2 | 0.70514 (17) | 0.48939 (15) | 0.15780 (13) | 0.0901 (5) | |
| S1 | 0.71199 (12) | −0.00409 (12) | 0.15693 (9) | 0.0651 (4) | |
| O1 | 0.8667 (4) | −0.0424 (4) | 0.2054 (3) | 0.0761 (8) | |
| O2 | 0.5732 (4) | −0.1359 (4) | 0.0795 (3) | 0.0757 (8) | |
| N1 | 0.7673 (4) | 0.1494 (4) | 0.0701 (3) | 0.0659 (9) | |
| H1N | 0.678 (7) | 0.178 (6) | 0.034 (5) | 0.079* | |
| C1 | 0.6225 (5) | 0.0807 (5) | 0.2792 (4) | 0.0637 (9) | |
| C2 | 0.7215 (5) | 0.1757 (5) | 0.3907 (4) | 0.0660 (10) | |
| C3 | 0.6344 (6) | 0.2423 (6) | 0.4761 (4) | 0.0719 (11) | |
| H3 | 0.6974 | 0.3069 | 0.5507 | 0.086* | |
| C4 | 0.4585 (6) | 0.2158 (6) | 0.4536 (4) | 0.0708 (10) | |
| C5 | 0.3607 (6) | 0.1217 (6) | 0.3426 (4) | 0.0732 (11) | |
| H5 | 0.2410 | 0.1036 | 0.3271 | 0.088* | |
| C6 | 0.4441 (5) | 0.0565 (5) | 0.2569 (4) | 0.0686 (10) | |
| H6 | 0.3800 | −0.0057 | 0.1818 | 0.082* | |
| C7 | 0.9177 (5) | 0.2931 (5) | 0.1116 (4) | 0.0625 (9) | |
| C8 | 0.9064 (6) | 0.4560 (5) | 0.1521 (4) | 0.0693 (10) | |
| C9 | 1.0553 (7) | 0.5950 (6) | 0.1862 (4) | 0.0812 (12) | |
| H9 | 1.0466 | 0.7053 | 0.2114 | 0.097* | |
| C10 | 1.2140 (6) | 0.5692 (7) | 0.1826 (5) | 0.0900 (15) | |
| H10 | 1.3139 | 0.6619 | 0.2069 | 0.108* | |
| C11 | 1.2280 (6) | 0.4087 (7) | 0.1436 (5) | 0.0900 (15) | |
| H11 | 1.3372 | 0.3921 | 0.1427 | 0.108* | |
| C12 | 1.0796 (6) | 0.2698 (6) | 0.1052 (5) | 0.0760 (11) | |
| H12 | 1.0891 | 0.1615 | 0.0753 | 0.091* | |
| C13 | 0.9170 (6) | 0.2092 (8) | 0.4254 (4) | 0.0875 (14) | |
| H13A | 0.9430 | 0.1011 | 0.4307 | 0.105* | |
| H13B | 0.9567 | 0.2823 | 0.5044 | 0.105* | |
| H13C | 0.9747 | 0.2655 | 0.3630 | 0.105* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0896 (9) | 0.1076 (10) | 0.0887 (9) | 0.0410 (7) | 0.0150 (6) | 0.0072 (7) |
| Cl2 | 0.0869 (8) | 0.0730 (8) | 0.1186 (10) | 0.0325 (6) | 0.0255 (7) | 0.0141 (6) |
| S1 | 0.0608 (6) | 0.0547 (6) | 0.0758 (7) | 0.0165 (4) | −0.0011 (4) | 0.0066 (4) |
| O1 | 0.0695 (18) | 0.0690 (17) | 0.093 (2) | 0.0285 (14) | 0.0023 (15) | 0.0136 (14) |
| O2 | 0.0690 (17) | 0.0601 (16) | 0.0872 (19) | 0.0119 (13) | −0.0024 (14) | −0.0020 (13) |
| N1 | 0.0591 (18) | 0.0635 (19) | 0.0692 (19) | 0.0144 (14) | −0.0032 (14) | 0.0074 (14) |
| C1 | 0.058 (2) | 0.060 (2) | 0.073 (2) | 0.0185 (16) | −0.0008 (17) | 0.0152 (17) |
| C2 | 0.061 (2) | 0.071 (2) | 0.065 (2) | 0.0205 (17) | −0.0021 (17) | 0.0108 (17) |
| C3 | 0.072 (2) | 0.073 (2) | 0.065 (2) | 0.0210 (19) | −0.0043 (18) | 0.0072 (18) |
| C4 | 0.075 (2) | 0.070 (2) | 0.071 (2) | 0.0278 (19) | 0.0071 (19) | 0.0153 (18) |
| C5 | 0.062 (2) | 0.079 (3) | 0.079 (3) | 0.0260 (19) | 0.0022 (19) | 0.013 (2) |
| C6 | 0.061 (2) | 0.067 (2) | 0.072 (2) | 0.0168 (18) | −0.0026 (18) | 0.0084 (17) |
| C7 | 0.058 (2) | 0.062 (2) | 0.063 (2) | 0.0149 (16) | −0.0013 (15) | 0.0093 (15) |
| C8 | 0.072 (2) | 0.065 (2) | 0.068 (2) | 0.0178 (18) | 0.0016 (18) | 0.0123 (17) |
| C9 | 0.087 (3) | 0.067 (2) | 0.077 (3) | 0.006 (2) | 0.000 (2) | 0.0105 (19) |
| C10 | 0.070 (3) | 0.086 (3) | 0.095 (3) | −0.005 (2) | −0.011 (2) | 0.025 (2) |
| C11 | 0.061 (2) | 0.094 (3) | 0.109 (4) | 0.014 (2) | −0.005 (2) | 0.032 (3) |
| C12 | 0.062 (2) | 0.080 (3) | 0.089 (3) | 0.023 (2) | 0.008 (2) | 0.022 (2) |
| C13 | 0.062 (3) | 0.114 (4) | 0.075 (3) | 0.022 (2) | −0.008 (2) | −0.003 (2) |
Geometric parameters (Å, °)
| Cl1—C4 | 1.719 (5) | C5—H5 | 0.9300 |
| Cl2—C8 | 1.728 (5) | C6—H6 | 0.9300 |
| S1—O1 | 1.423 (3) | C7—C8 | 1.378 (6) |
| S1—O2 | 1.430 (3) | C7—C12 | 1.381 (6) |
| S1—N1 | 1.643 (4) | C8—C9 | 1.388 (6) |
| S1—C1 | 1.761 (4) | C9—C10 | 1.360 (8) |
| N1—C7 | 1.424 (5) | C9—H9 | 0.9300 |
| N1—H1N | 0.88 (5) | C10—C11 | 1.364 (8) |
| C1—C6 | 1.390 (5) | C10—H10 | 0.9300 |
| C1—C2 | 1.398 (5) | C11—C12 | 1.389 (6) |
| C2—C3 | 1.387 (7) | C11—H11 | 0.9300 |
| C2—C13 | 1.522 (6) | C12—H12 | 0.9300 |
| C3—C4 | 1.366 (6) | C13—H13A | 0.9600 |
| C3—H3 | 0.9300 | C13—H13B | 0.9600 |
| C4—C5 | 1.388 (6) | C13—H13C | 0.9600 |
| C5—C6 | 1.364 (7) | ||
| O1—S1—O2 | 120.08 (19) | C1—C6—H6 | 119.2 |
| O1—S1—N1 | 107.27 (18) | C8—C7—C12 | 119.1 (4) |
| O2—S1—N1 | 104.75 (18) | C8—C7—N1 | 122.1 (4) |
| O1—S1—C1 | 109.99 (19) | C12—C7—N1 | 118.8 (4) |
| O2—S1—C1 | 106.96 (19) | C7—C8—C9 | 120.6 (4) |
| N1—S1—C1 | 107.03 (18) | C7—C8—Cl2 | 120.0 (3) |
| C7—N1—S1 | 120.4 (3) | C9—C8—Cl2 | 119.4 (4) |
| C7—N1—H1N | 114 (3) | C10—C9—C8 | 119.6 (5) |
| S1—N1—H1N | 113 (3) | C10—C9—H9 | 120.2 |
| C6—C1—C2 | 120.1 (4) | C8—C9—H9 | 120.2 |
| C6—C1—S1 | 116.1 (3) | C9—C10—C11 | 120.6 (4) |
| C2—C1—S1 | 123.7 (3) | C9—C10—H10 | 119.7 |
| C3—C2—C1 | 117.4 (4) | C11—C10—H10 | 119.7 |
| C3—C2—C13 | 118.0 (4) | C10—C11—C12 | 120.2 (5) |
| C1—C2—C13 | 124.6 (4) | C10—C11—H11 | 119.9 |
| C4—C3—C2 | 121.9 (4) | C12—C11—H11 | 119.9 |
| C4—C3—H3 | 119.0 | C7—C12—C11 | 119.8 (5) |
| C2—C3—H3 | 119.0 | C7—C12—H12 | 120.1 |
| C3—C4—C5 | 120.6 (4) | C11—C12—H12 | 120.1 |
| C3—C4—Cl1 | 119.2 (4) | C2—C13—H13A | 109.5 |
| C5—C4—Cl1 | 120.3 (4) | C2—C13—H13B | 109.5 |
| C6—C5—C4 | 118.5 (4) | H13A—C13—H13B | 109.5 |
| C6—C5—H5 | 120.8 | C2—C13—H13C | 109.5 |
| C4—C5—H5 | 120.8 | H13A—C13—H13C | 109.5 |
| C5—C6—C1 | 121.6 (4) | H13B—C13—H13C | 109.5 |
| C5—C6—H6 | 119.2 | ||
| O1—S1—N1—C7 | −43.2 (4) | Cl1—C4—C5—C6 | −179.9 (3) |
| O2—S1—N1—C7 | −171.9 (3) | C4—C5—C6—C1 | 0.7 (6) |
| C1—S1—N1—C7 | 74.8 (4) | C2—C1—C6—C5 | −0.9 (6) |
| O1—S1—C1—C6 | −153.8 (3) | S1—C1—C6—C5 | −177.6 (3) |
| O2—S1—C1—C6 | −21.8 (3) | S1—N1—C7—C8 | −106.8 (4) |
| N1—S1—C1—C6 | 90.0 (3) | S1—N1—C7—C12 | 76.4 (5) |
| O1—S1—C1—C2 | 29.7 (4) | C12—C7—C8—C9 | −0.1 (6) |
| O2—S1—C1—C2 | 161.6 (3) | N1—C7—C8—C9 | −176.9 (4) |
| N1—S1—C1—C2 | −86.6 (4) | C12—C7—C8—Cl2 | 178.6 (3) |
| C6—C1—C2—C3 | 0.2 (6) | N1—C7—C8—Cl2 | 1.9 (6) |
| S1—C1—C2—C3 | 176.7 (3) | C7—C8—C9—C10 | −1.7 (7) |
| C6—C1—C2—C13 | 179.5 (4) | Cl2—C8—C9—C10 | 179.6 (4) |
| S1—C1—C2—C13 | −4.0 (6) | C8—C9—C10—C11 | 1.2 (8) |
| C1—C2—C3—C4 | 0.6 (6) | C9—C10—C11—C12 | 1.0 (8) |
| C13—C2—C3—C4 | −178.8 (4) | C8—C7—C12—C11 | 2.3 (6) |
| C2—C3—C4—C5 | −0.7 (7) | N1—C7—C12—C11 | 179.2 (4) |
| C2—C3—C4—Cl1 | 179.2 (3) | C10—C11—C12—C7 | −2.7 (7) |
| C3—C4—C5—C6 | 0.1 (6) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···O2i | 0.88 (5) | 2.17 (5) | 2.994 (5) | 157 (4) |
| N1—H1N···Cl2 | 0.88 (5) | 2.67 (5) | 3.011 (4) | 104 (4) |
Symmetry codes: (i) −x+1, −y, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2384).
References
- Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
- Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
- Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007880/tk2384sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007880/tk2384Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


